	Name of The Faculty: Faculty of Science																													
L	Name of the Program : M. Sc. (Physics)																													
			Sci	neme of	Stud	y/ S	che	eme	of	Ex	ami	nat	tion	, 20	20	On	war	ds			D	4.00					1	-		I
										Sur	mmat	1	Ineo	ry							Prac	tical					-		-	
										i As	ive sess		Fo Ass	ormat sessn	ive nent		Å	Sumr Asses	native smer	ə it	F	orma	ative	Asse	ssme	ent				
Sr. No.	Semester/ Year	Course Code	Course Name	Theory/ Practical	Core/ AECC/ SEC/ DSE/ GE/OE	Lecture	Tutorial	Practical	Credits	Max	Pass	Sessional/Class Test	Assignment	Professional Activities	Max	Pass	Demonstration/Conduct/Presentation	Viva-voce	Max	Pass	Attendance & Regularity in Lab Work	Project/Laboratory Work Report	Midterm Oral Examination/Assessment	Conduct/Demonstration	Max	Pass	Overall Maximum Marks	Overall Pass Marks	Whether to be offered under CBCS (Yes/No)	Scheme of Examinations (Theory+Internal +Practical+Oral/ Theory+Internal +Practical/ Theory+Practica I
1		17080101	Mathematical Physics	Theory	Core	3	0	0	3	60	24	20	10	10	40	16	00	00	40	40	40	40	40				100	40	NO	Theory+Internal
2		17080102	Mathematical Physics Lab	Practical	Core	0	0	4	2	60	24	20	10	10	40	16	20	20	40	16	10	10	10	30	60	24	100	40	NO	Practical+Internal
4		17080103	Classical Mechanics lab	Practical	Core	0	0	4	2	00	24	20	10	10	40	10	20	20	40	16	10	10	10	30	60	24	100	40	NO	Practical+Internal
5	1/1	17080105	Statistical Mechanics	Theory	Core	3	0	0	3	60	24	20	10	10	40	16											100	40	NO	Theory+Internal
6		17080106	Statistical Mechanics Lab	Practical	Core	0	0	4	2								20	20	40	16	10	10	10	30	60	24	100	40	NO	Practical+Internal
7		17080107	Professional Ethics & Human Values	Theory	AECC	2	0	0	2	60	24	20	10	10	40	16											100	40	NO	Theory+Internal
8		17080108	Computational Methods & Programming(Matlab/Python)	Theory	SEC	2	0	0	2	60	24	20	10	10	40	16											100	40	NO	Practical+Internal
9		17080201	Quantum Mechanics	Theory	Core	3	0	0	3	60	24	20	10	10	40	16											100	40	NO	Theory+Internal
10		17080202	Quantum Mechanics Lab	Practical	Core	0	0	4	2								20	20	40	16	10	10	10	30	60	24	100	40	NO	Practical+Internal
11		17080203	Electrodynamics and Plasma Physics	Theory	Core	3	0	0	3	60	24	20	10	10	40	16	20	20	40	16	10	40	40	20	co	24	100	40	NO	Theory+Internal
12	II/I	17080204	Atomic and Molecular Physics	Theory	Core	3	0	4	2	60	24	20	10	10	40	16	20	20	40	10	10	10	10	30	60	24	100	40	NO	Theory+Internal
14		17080206	Atomic and Molecular Physics Lab	Practical	Core	0	0	4	2	00	24	20	10	10	40	10	20	20	40	16	10	10	10	30	60	24	100	40	NO	Practical+Internal
15		17080207	Research Methodology	Theory	AECC	2	0	0	2	60	24	20	10	10	40	16											100	40	NO	Theory+Internal
16		17080208	The Physics of Nano Materials	Theory	SEC	2	0	0	2	60	24	20	10	10	40	16											100	40	NO	Practical+Internal
47		47000004		771	050	-	_	_	_	<u> </u>	04		10	10	40	40											400	40	NO	These violates and
17		17080301	Laser and its applications	Theory	OFC	2	0	0	2	60	24	20	10	10	40	16											100	40	NO	Theory+Internal
19		17080303	Semiconductor Devices	Theory	DSEC	3	0	0	3	60	24	20	10	10	40	16											100	40	NO	Theory+Internal
20		17080304	Semiconductor Devices Lab	Practical	DSEC	0	0	4	2						-		20	20	40	16	10	10	10	30	60	24	100	40	NO	Practical+Internal
21		17080305	Digital Electronics	Theory	DSEC	3	0	0	3	60	24	20	10	10	40	16											100	40	NO	Theory+Internal
22		17080306	Digital Electronics Lab	Practical	DSEC	0	0	4	2								20	20	40	16	10	10	10	30	60	24	100	40	NO	Practical+Internal
23		17080307	Analog and Digital Communication	Theory	DSEC	3	0	0	3	60	24	20	10	10	40	16	20	20	40	16	10	40	40	20	co	24	100	40	NO	Theory+Internal
24		17080308	Basic Concepts in Condensed Matter Physics	Theory	DSEC	3	0	4	2	60	24	20	10	10	40	16	20	20	40	10	10	10	10	30	60	24	100	40	NO	Theory+Internal
26		17080310	Basic Concepts in Condensed Matter Physics Lab	Practical	DSEC	0	0	4	2	00							20	20	40	16	10	10	10	30	60	24	100	40	NO	Practical+Internal
27	111/11	17080311	Condensed Matter Physics: Physical Properties	Theory	DSEC	3	0	0	3	60	24	20	10	10	40	16											100	40	NO	Theory+Internal
28		17080312	Condensed Matter Physics: Physical Properties Lab	Practical	DSEC	0	0	4	2								20	20	40	16	10	10	10	30	60	24	100	40	NO	Practical+Internal
29		17080313	Advanced Condensed Matter Physics	Theory	DSEC	3	0	0	3	60	24	20	10	10	40	16			40	40							100	40	NO	Theory+Internal
30		17080314	Advanced Condensed Matter Physics Lab	Practical Theory	DSEC	0	0	4	2	60	24	20	10	10	40	16	20	20	40	16	10	10	10	30	60	24	100	40	NO	Practical+Internal
32		17080315	Nuclear Physics	Practical	DSEC	0	0	4	2	00	24	20	10	10	40	10	20	20	40	16	10	10	10	30	60	24	100	40	NO	Practical+Internal
33		17080317	Advanced Nuclear Physics : Structure and Reactions	Theory	DSEC	3	0	0	3	60	24	20	10	10	40	16										1	100	40	NO	Theory+Internal
34		17080318	Advanced Nuclear Physics : Structure and Reactions Lab	Practical	DSEC	0	0	4	2								20	20	40	16	10	10	10	30	60	24	100	40	NO	Practical+Internal
35		17080319	Experimental techniques in Nuclear Physics	Theory	DSEC	3	0	0	3	60	24	20	10	10	40	16											100	40	NO	Theory+Internal
36		17080320	Experimental techniques in Nuclear Physics Lab	Practical	DSEC	0	0	4	2	<u> </u>	1		<u> </u>				20	20	40	16	10	10	10	30	60	24	100	40	NO	Practical+Internal
\vdash		17080321		Practical	<u> </u>	1	-	-	4	+	+		1			-	40	40	80	32	20	20	20	60	120	48	200	80	NU	ractical+internal
37		17080401	Project Work	Practical	RT	1			20	1	-		1				80	80	160	64	40	40	40	120	240	96	400	160	NO	Practical+Internal
38		17080402	Electronics	Theory	DSEC	4	0	0	4	60	24	20	10	10	40	16							L	Ľ		Ľ	100	40	NO	Theory+Internal
39		17080403	Electronics- lab	Practical	DSEC	0	0	2	1								20	20	40	16	10	10	10	30	60	24	100	40	NO	Practical+Internal

								_			_			-			-	_		_				-	-	-				
40		17080404	Condensed Matter Physics: Basics	Theory	DSEC	4	0	0	4	60	24	20	10	10	40	16											100	40	NO	Theory+Internal
41		17080405	Condensed Matter Physics: Basics-Lab	Practical	DSEC	0	0	2	1								20	20	40	16	10	10	10	30	60	24	100	40	NO	Practical+Internal
42	IV/II	17080406	Introductory Nuclear Physics	Theory	DSEC	4	0	0	4	60	24	20	10	10	40	16											100	40	NO	Theory+Internal
43		17080407	Introductory Nuclear Physics-Lab	Practical	DSEC	0	0	2	1								20	20	40	16	10	10	10	30	60	24	100	40	NO	Practical+Internal
44		17080408	Advance Applied Physics	Theory	DSEC	4	0	0	4	60	24	20	10	10	40	16											100	40	NO	Theory+Internal
45		17080409	Advance Applied Physics-Lab	Practical	DSEC	0	0	2	1								20	20	40	16	10	10	10	30	60	24	100	40	NO	Practical+Internal
46		17080410	Spectroscopic Techniques	Theory	DSEC	4	0	0	4	60	24	20	10	10	40	16											100	40	NO	Theory+Internal
47		17080411	Spectroscopic Techniques-Lab	Practical	DSEC	0	0	2	1								20	20	40	16	10	10	10	30	60	24	100	40	NO	Practical+Internal
48			Online Courses during 1st, 2nd, and 3rd semesters*						9																					

* 4 week course-1 credit. 8 week course-2 credit. 12 week course-3 credit.
Every semester a student may opt for either
one, 12 week course
one, 4 week course & one, 8 week course
Three, 4 week courses

Department of Physics M.Sc. Physics Syllabus and Curriculum (2020 onwards) Program Structure under Choice Based Credit System (CBCS)

Semester-I

1. Name of the Depar	tment: Physics										
2. Course Name	Mathematical Physics	L	Т		Р						
3. Course Code	17080101 3 0 0										
4. Type of Course (us	e tick mark)	Core $()$	DSE ()		SEC ()						
5. Pre-requisite	Pre-requisite6. FrequencyEven ()Odd (\sqrt) Either Sem ()H Sem ()										
(if any) (use tick marks)											
7. Total Number of Lectures, Tutorials, Practical											
Lectures = 40Tutorials = 0Practical = 0											
8. Course Description:											
The course will teach about a variety of mathematical methods which are used in solving problems in physics. These methods include solution of differential equations, tensors and matrices, and complex variables. 9. Course Objectives: To impart knowledge about various mathematical tools employed to study physics problems.											
10. Course Outcomes (COs):										
Students will have under	standing of										
1. Various techniques to	solve differential eq	uations.									
2. How to use special fur	nctions in various pl	sics problems.									
3. Use complex analysis	in solving physical	problems.									
4. Use the orthogonal po	lynomials and other	special functions;									
5. Use Fourier series and integral transformation.											
11. Unit wise detailed content											
Unit-1 Number of lectures = 10 Title of the unit: Vector spaces, tensors and matrices											
Vector spaces: Introduction, definition of linear vector space, Linear independence, basis and dimension, scalar product, orthonormal basis, Linear operators, Matrices, orthogonal, Unitary and Hermitian Matrices, eigen											

Unit - 2	Number of lectures = 10	Title of the unit: Differential equations and special functions
First order e solution aro Bessel's equ	equation, second order equation und an ordinary point and reg ation, Hermite & Laguerre equat	with variable coefficients, Ordinary point, singular point, series gular singular point, Solution of Legendre equation, Solution of ions.
Unit - 3	Number of lectures = 10	Title of the unit: Complex variables
Function of function, Ca Laurent's se evaluation o	complex variable, limit, continu auchy-Riemann conditions, Cau ries, singular points, residues, e f real definite integrals.	ity and differentiability of function of complex variables, Analytic uchy's integral theorem, Cauchy's integral formula, Taylor's and evaluation of residues, Cauchy's residue theorem, Jordan's lemma,
Unit - 4	Number of lectures = 10	Title of the unit: Integral transforms
Fourier serie the Fourier i	es, Dirichlet's conditions, Fourie ntegral, Fourier integral theorem	r series of arbitrary period, Half-wave expansions, development of , Fourier transforms, Properties of Fourier transform.
12. Brief De	escription of self-learning / E-le	earning component
http://nptel.a	nc.in/courses/115103036/	
http://web.m	it.edu/al24406/www/mathmeth/	DiffForms_SchulzSchulz_10Sep.pdf
https://www	.youtube.com/watch?v=LYNOG	ik3ZjFM
13. Books F	Recommended	
1. G. Arfken 0123846544	and H.J. Weber. Mathematical	Methods for Physicists. San Diego: Academic Press. ISBN-10:
2. A.W. Josh	ni. Matrices and Tensors in Phys	ics. New Delhi: Wiley Eastern. ISBN-10: 8122405630.
3. P.K. Chat	opadhyay. Mathematical Physics	s. New Delhi: Wiley Eastern. ISBN-10: 8122434401.
4. C. Harper	. Introduction to Mathematical P	Physics. New Delhi: Prentice Hall of India. ISBN-10: 8120302621.
5. M.L. Boa 9780471198	s. Mathematical Methods in the 2260	Physical Sciences. New York: John Wiley. ISBN-10 :
6. L. Pipes a	nd L.R. Horwell. Applied Mathe	ematics for Engineers and Physicists. ISBN-10: 0486779513.
		: B07YCGC4ZS
7. B.S. Rajp	ut. Mathematical Physics. ASIN	

1.	Name of the Depart	tment: Physics					
2.	Course Name	Mathematical Physics Lab	L	Т		Р	
3.	Course Code	17080102	0	0		4	
4.	Type of Course (use	e tick mark)	Core (√)	DSE ()		SEC ()	
5.	Pre-requisite (if any)		6. Frequency (use tick marks)	Even ()	0dd (√)	Either Sem ()	Every Sem ()

7. Total Number of Lectures, Tutorials, Practical

r

Tutorials = 0

Practical = 52

8. Course Description:

Lectures =

This course will teach you the practical knowledge of how to obtain solutions to system of linear equations, differential equations, FFT etc. using computational methods.

9. Course Objectives:

This lab introduces students to numerical techniques used for solving mathematical problems that cannot be solved or are difficult to solve analytically.

10. Course Outcomes (COs):

Students will have understanding of:

1. MATLAB/Python basics

2. Various computational methods like matrix manipulation useful to solve research problems.

11. List of Experiments

1. Scalar and Vector Product in MATLAB/Python.

2. Eigenvalue and eigenvectors of various matrices in MATLAB/Python.

2. Solving systems of linear equations in MATLAB/Python.

3. Solving second order differential equation with variable coefficients in MATLAB/Python.

4. Solution of Legendre equation, in MATLAB/Python.

5. Numerically solving Bessel function of second kind in MATLAB/Python.

6. Evaluates the Laguerre polynomial, the generalized Laguerre polynomial, and the Laguerre function in MATLAB/Python.

7. Compute and plot a simple sinusoid of amplitude 1 and frequency f=1 for for 0<t<1in MATLAB/Python.

8. Compute and plot a complex sinusoidal function consisting of the sum of 5 sine waves with equal amplitudes but whose frequencies are 1,3,5,10, and 20, again for t varying from 0 to 2π in MATLAB/Python.

9. Computing Fourier Series and Power Spectrum with MATLAB/Python.

10. Generating various waveforms using arbitrary function generator and using Tektronix Digital Phosphor Oscilloscope and finding its FFT.

Note: The list of the experiment given above should be considered as suggestive of the standard and available equipment. The faculty members are authorised to add or delete from this list whenever considered necessary.

12. Book Recommended:

1. Introduction to MATLAB 7 by ETTER, PEARSON INDIA. ISBN 9788131723135

2. Computational Physics, 2nd edition, Nicholas J. Giordano, Purdue University, Hisao Nakanishi, Purdue University Pearson Education Inc, 2006, ISBN: 978-0131469907.

3. Numerical Methods Kindle Edition by Babu Ram (Author) ASIN: B00G4YDRSS

4. https://www.mccormick.northwestern.edu/documents/students/undergraduate/introduction-to-matlab.pdf

5. https://in.mathworks.com/

6. A.W. Joshi. Matrices and Tensors in Physics. New Delhi: Wiley Eastern.

7. P.K. Chattopadhyay. Mathematical Physics. New Delhi: Wiley Eastern.

1.	Name of the Depart	ment: Physics								
2.	Course Name	Classical	L	Т		Р				
		Mechanics								
3.	Course Code	17080103	3	0		0				
4.	Type of Course (use	e tick mark)	Core $()$	DSE()		SEC()				
5.	Pre-requisite		6. Frequency	Even () Oc	dd	Either	Every			
	(if any)		(use tick marks)	(√)	Sem ()	Sem ()			
7.	7. Total Number of Lectures, Tutorials, Practical									
Le	ctures = 40		Tutorials = 0	Practical =	0					

Lectures = 40

Practical = 0

8. Brief Syllabus:

The syllabus is divided into four units i.e. Lagrangian formulation and Hamilton's principle, rigid body motion, small oscillation and Hamilton equation, and canonical transformation and Hamilton-Jocobi theory.

9. Learning objectives:

The course aims to provide students with an understanding of the basics of Lagrangian formulation, Hamilton's principle and canonical transformation and Hamilton-Jacobi Theory. It also gives the idea how to write Lagrangian and Hamiltonian for the rigid body motion.

10. Course Outcomes (COs):

After the successful completion of the course, students would be able to

1. Apply the basics involved in the small oscillation and related Hamilton equation and experimental physics as rigid body dynamics with transformation

2. Apply their theoretical, experimental knowledge and conceptualizing their solutions

3. Use classical mechanics' scientific potential to analyze scientific ideas and explanations.

4. Demonstrations and learning of research-based knowledge of different system dynamics, mechanics based practical and project.

11.	Unit	wise detailed	d content								
Unit-1		Number of	lectures = 12	Title	of	the	unit:	Lagrangian	Formulation	&	Hamilton's
				Princ	iple						

Mechanics of a system of particles, constraints of motion, generalized coordinates, D'Alembert's Principle Lagrange's velocity dependent forces (gyroscopic), dissipation function, Application of Lagrangian formulation Hamilton principle, Lagrange's equation from Hamilton principle, extension to non-holonomic systems.

Unit – 2	Number of lectures = 10	Title of the unit: Rigid Body Motion

Reduction to equivalent one body problem, the equation of motion and first integrals, the equivalent onedimensional problem, the differential equation for orbits, Kepler's problem (inverse square law), The Euler's angles, rate of change of a vector, Coriolis force.

Unit - 3Number of lectures = 10Title of the unit: Small Oscillations &	& Hamilton Equation

Euler equation of motion, Torque free motion of rigid body, Eigen value equation, Free vibrations, Normal coordinates, Legendre Transformation, Hamilton's equations of motion, Hamilton's equations from variation principle, Principle of least action.

Unit – 4	Number of lectures = 8	Title of the unit: Canonical Transformation and Hamilton-
		Jacobi Theory

Canonical transformation and its examples, Equation of motion, Poisson's Brackets relations, Conservation Theorems., Hamilton-Jacobi equation Hamilton's principal function, Harmonic Oscillator problem

Brief Description of self-learning / E-learning component:

To understand basic concepts in detail, students may get study materials on following links.

https://onlinecourses.nptel.ac.in/noc18_ph02

http://www.damtp.cam.ac.uk/user/tong/dynamics/clas.pdf

http://courses.physics.ucsd.edu/2010/Fall/physics200a/LECTURES/200_COURSE.pdf

12. Books Recommended

1. Herbert Goldstein, Classical Mechanics Pearson Education; 3 edition (2011) (ISBN: 978-8131758915).

2. J.C. Upadhyaya, Classical Mechanics: Himalaya Publishing House, 2014 (ISBN: 978-9351427988)

3. N.C. Rana and P.S. Joag. Classical Mechanics. Tata McGraw-Hill, 2001, (ISBN: 978-0074603154)
4. Kiran C. Gupta. Classical Mechanics of Particles and Rigid Bodies. New Delhi: Wiley Eastern, 2018 (ISBN: 978-9386649782)

1. Name of	1. Name of the Department: Physics						
2. Course	Classical	L	Т		Р		
Name	Mechanics-Lab						
3.Course Code	17080104	0	0		4		
4 Type of 4	Course (use tick	Core (1)	DSI	ΕÛ	SEC O		
mark)	Course (use lick						
		6 E-	Erre	n 0.4.4	Fither	Euom	
5. Pre-		6. Frequency	Eve		Enther	Every	
requisite		(use tick marks)	0	(√)	Sem ()	Sem ()	
(if any)							
7. Total Nu	mber of Lectures.	Tutorials, Practical					
Lectures = 0		Tutorials = 0		Practical =	52		
8. Course I	Description:						
In this course st	udent will gain the	e practical knowledge al	bout 1	the Understa	and laws of	motion	
and their applica	tion to various dyn	amical situations, compu	iter S	imulation o	f projectile	motion	
and orbital mech	hanics, hyperbolic	orbit motion with conid	c sect	ion, Hamilt	ton's Least	Action	
principle for a p	article under the a	ction of gravity Action	field	of the Ken	ler/Coulor	1b	
nrohlem	and the under the u	cuon or gravity, riction		. Si the hep			
	Objection						
9. Course	objectives:	L	1				
1. Understand la	ws or motion and t	neir application to variou	is dyr	namical situ	ations.		
2. Understand a	and study of Kepl	er's laws to describe the	ne mo	otion of pla	inets and s	atellite in	
circular orbit.							
3. Explain the ph	enomenon of simp	le harmonic motion.					
4. Study of Ham	ilton's Least Actic	on principle for a particl	e und	ler the actio	n of gravity	у	
10. Course (Dutcomes (COs):	.			~ ~ ~		
After successful	completion of this c	course, students will be ab	le to				
1 Visualize the si	mulation and corre	late the theoretical concer	ots an	d identify its	practical ar	nlications	
through experime	ents	inte ine incoretical concep	, is all	a raominy ite	Practical ap	Pilouions	
2 Understand law	vs of motion and the	ir application to various	lvnan	nical situatio	ns		
2. Understand an	d study of Kenler'	a laws to describe the mo	aynan	of planets of	nd satellite :	in circular	
orbit	a suay of Kepler	s laws to describe the fill	511011	or planets a	nu satemite	in circular	
1 Explain the ph	nomanon of simpl	hormonic motion					
4. Explain the pho	top's Loget A stirul	mannome mouon	dan 41-	a action of -			
5. Study of Hami	non's Least Action	principle for a particle und	uer th	e action of g	ravity		
11. List of E	xperiments						
1. Simulatio	on of projectile mo	tion and orbital mechani	ics us	ing both the	e Classical	4th Order	
Runge-Kutta method and Euler's Method (Simulation and Computational)							
2. Conic sec	2. Conic section projectile hyperbolic orbit motion (Simulation and Computational)						
3 Conic section curves with r min and r max (Simulation and Computational)							
4 Hamilton	's Least Action pri	nciple for a particle unde	er the	action of o	ravity (Com	putational	
and Simu	lation)	norpio for a purificio una		action of g	unity (Com	raunonui	
5 Attractive	- Potential anarow	ourves for a body under a	contr	al force (Co	mutational)	
5. Attractive	ind to obtain the fir	a it takes to so from r m	in to	r mov in or	orbit due to	, force of	
6. Orbit period to obtain the time it takes to go from r min to r max in an orbit due to a force of							

E.

the form arp (Simulation and Computational)

- 7. Action field of the Kepler/Coulomb problem (Simulation and Computational)
- 8. Keplerian orbits and principle (Simulation and Computational)
- 9. Roll pendulum (Simulation and Computational) (The suspension point K_1 of a plane pendulum slides frictionless along the x-axis. The pendulum body K_2 has the distance L from the suspension point. Both bodies have the same mass $m_1=m_2=m$ and the connection between K_1 and K_2 is mass less)
- 10. To determine the height of a building using a Sextant.
- 11. To determine g and velocity for a freely falling body using Digital Timing Technique.

12. To determine Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method).

13. To determine the Young's Modulus of a Wire by Optical Lever Method.

Note: The list of the experiment given above should be considered as suggestive of the standard and available equipment. The faculty members are authorised to add or delete from this list whenever considered necessary.

12. Book Recommended

References for Laboratory Work:

1.Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House, ISBN-13 : 978-0423738902

2.Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd. ISBN: 9788131525203

3. Practical Physics, G. L. Squires, 2015, 4/e, Cambridge University Press, ISBN- 9781139164498 4. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11/e, 2011, Kitab Mahal. ISBN-13 : 978-8122500844.

1. Name of the Department: Physics							
2.	Course Name	Statistical	L	Т		Р	
		Mechanics					
3.	Course Code	17080105	3	0 0			
4.	Type of Course (u	se tick mark)	Core $()$	DSE ()		SEC ()	
5.	Pre-requisite		6. Frequency	Even ()	Odd	Either	Every
	(if any)		(use tick		()	Sem ()	Sem ()
			marks)				
7.	Total Number of	Lectures, Tutorials	s, Practical				
Le	ctures = 40		Tutorials = 0	Practi	cal = 0		
8.	Brief Syllabus:						
sy: ph	stems, in Bose-Einst ysical phenomenon	ein condensation, Is which cannot be exp	sing model, random wa	alk, Browr mechanics	ian motio s principle	n and mates.	ny more
9.	Learning objective	s:					
The course aims to provide students with an understanding of the basics of phase space, ensembles, and different types of system like canonical, micro-canonical and grand-canonical system. To develop understanding of writing partition functions for these systems.							
10	. Course Outcomes	(COs):					
Af	ter the successful co	mpletion of the cou	rse, students would be	able to			
1.	Understand phase	space and canonical	l system.				
2.	Write partition fur	nctions for the canor	nical. micro-canonical	and grand	-canonical	systems.	
2. Understand the thermodynamic behavior of an Ideal Rose gas and an Ideal Formi gas							
4. Describe the basis involved in Desc Einstein and direction. Line and di futuri in the							
4. Describe the basic involved in Bose-Einstein condensation, Ising model, random walk and Brownian motion.							
11. Unit wise detailed content							
Uı	nit-1 Number	of lectures = 8	Title of the unit: Ba	sics of sta	tistical m	echanics	
Sc	ope and aim of sta	tistical mechanics.	Transition from therm	nodynamie	cs to stati	stical me	chanics.

Review of the ideas of phase space, phase points, Ensemble, Density of phase points. Liouville's equation and Liouville's theorem

Unit - 2 Number o	of lectures = 12	Title of the unit: C	Canonical systems
-------------------	------------------	----------------------	-------------------

Stationary ensembles: Micro canonical, canonical and grand canonical ensembles. Partition function formulation. Fluctuation in energy and particle. Equilibrium properties of ideal systems: ideal gas, Harmonic oscillators, rigid rotators. Para magnetism, concept of negative temperature.

	Unit – 3	Number of lectures = 12	Title of the unit: Quantum mechanical ensembles
--	----------	-------------------------	---

Quantum states and phase space; an ideal gas in quantum mechanical ensembles; Ideal Bose system, basic concepts and thermodynamic behavior of an Ideal Bose gas; Bose-Einstein condensation; Ideal Fermi systems; the thermodynamic behavior of an Ideal Fermi gas, discussion of heat capacity of a free electron gas at low temperatures; Pauli parameters, Boltzmann H-Theorem

Unit – 4 Number of lectures = 8 Title of the unit: Different models

A dynamical model of phase transitions, Critical indices, Ising model, Thermodynamic fluctuations, random walk, Brownian motion, introduction to non-equilibrium processes, diffusion equation.

11. Brief Description of self-learning / E-learning component:

To understand basic concepts in detail, students may get study materials on following links.

https://onlinecourses.nptel.ac.in/noc18_ph02

https://www.cmi.ac.in/~kpnmurthy/StatisticalMechanics2017/book.pdf

12. Books Recommended

- 1. R.K. Patharia. Statistical Mechanics. 2nd ed. Oxford: Butterworth-Heinemann. ASIN: B0092L8L2W.
- 2. K. Huang. Statistical Mechanics. New Delhi: Wiley Eastern. ISBN-10: 0471815187.
- 3. B.K. Agarwal and M. Eisner. Statistical Mechanics. New Delhi: Wiley Eastern. ISBN-10: 8122411576.
- 4. C. Kittel. Elementary Statistical Physics. New York: John Wiley. ISBN-10: 0486435148.
- 5. S.K. Sinha. Statistical Mechanics. New Delhi: Tata McGraw Hill. ISBN-10: 8173197172.
- 6. Suresh Chandra. Textbook of Statistical Mechanics. New Delhi: CBS Publishers. ISBN-10: 8123916086.

1.	1. Name of the Department: Physics								
2.	Course Name	Statistical	L	Т		Р			
		Mechanics Lab							
3.	Course Code	17080106	0	0		4			
4.	4. Type of Course (use tick mark)		Core $()$	DSE ()		SEC ()			
5.	Pre-requisite		6. Frequency	Even ()	Odd	Either	Every		
	(if any)		(use tick		()	Sem ()	Sem		
	-		marks)				0		
7. Total Number of Lectures, Tutorials, Practical									
Le	ctures = 0		Tutorials = 0	Practic	al = 52				
0	Course Decemintie								

8. Course Description:

In this course student will gain the practical knowledge about thermocouple & its calibration, Brownian motion, random walk etc

9. Course Objectives:

To determine various parameters like Boltzman constant, coefficient of thermal conductivity, thermo emf, cooling temperature of a hot object etc.

10. Course Outcomes (COs):

After successful completion of the course, students will be able to

Correlate the theoretical concepts and identify its practical applications through experiments.

11. List of Experiments

- 1. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.
- 2. Measurement of Planck's constant using black body radiation.
- 3. To calibrate Resistance Temperature Device (RTD) using Null Method/Off-Balance Bridge.
- 4. To study the thermocouple and plot the graph between thermo emf vs temperature.
- 5. Calibration of a thermocouple by potential meter
- 6. To study the random walk using MATLAB/Python
- 7. To study the Brownian motion using MATLAB/Python
- 8. To calculate probability distribution function using MATLAB/Python
- 9. To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's

disc method.

- 10. To determine the coefficient of thermal conductivity of copper by Searle's Apparatus.
- 11. To record and analyze the cooling temperature of a hot object as a function of time using a thermocouple and suitable data acquisition system.

Note: The list of the experiment given above should be considered as suggestive of the standard and available equipment. The faculty members are authorised to add or delete from this list whenever considered necessary.

12. Book Recommended

- 1. R. A. Dunlup. Experimental Physics: Modern Methods. New Delhi: Oxford University Press, ISBN- 0195049497.
- 2. Introduction to Matlab 7 1st Edition 2009 by ETTER, PEARSON INDIA. ISBN-9788131723135
- B.K. Agarwal and M. Eisner. Statistical Mechanics. New Delhi: Wiley Eastern. ISBN-10: 8122411576

<u>Semester</u>-II

1.	1. Name of the Department: Physics							
2.	Course Name	Quantum Mechanics	L	Τ		Р		
3. Coc	Course le	17080201	3	0		0		
4. mai	Type of Courk)	ırse (use tick	Core $()$	DSE	0	SEC ()		
5. req	Pre- uisite (if any)		6. Frequency (use tick marks)	Even (√)	Odd ()	Either Sem ()	Every Sem ()	
7. Total Number of Lectures, Tutorials, Practical								
Lec	tures = 40		Tutorials = 0	1	Practical =	0		

8. Course Description:

This course will give an introduction to quantum mechanics, beginning with wave mechanics, angular momentum, time evolution, the simple harmonic oscillator, bra-ket notation. The students will also be made familiar with time independent and independent perturbation theory applied to various problems.

9. Course Objectives:

To give exposure about the various tools employed to analyse the quantum mechanical problems.

10. Course Outcomes (COs):

1. Student will have understanding of Quantum Physics knowledge.

2. This course will help student in critical thinking and problem Solving

3. Quantum Mechanics course will develop research related skills

4. This course will develop Analytical/Scientific Reasoning in area of Quantum Mechanics

11.	Unit wise de	etailed content	
Unit-1		Number of lectures = 10	Title of the unit: General formalism of quantum & Schrodinger equations with applications

The Schrödinger equations, time dependent and time independent forms, probability current density, expectation values, Ehrenfest's theorem, Gaussian wave packet and its spreading., Exact statement and proof of the uncertainty principle, eigen values and Eigen functions, wave function in coordinate and momentum representations. Application of Schrödinger equation for a particle in one dimensional Box, tunnelling problem and linear harmonic oscillator.

Unit - 2Number of lectures = 8Title of the unit: Quant	tum operators
---	---------------

Operator in quantum mechanics, Hermitian operator and Unitary operator change of basis, Eigen values and eigenvectors of operators, Dirac s Bra and Ket algebra, Linear harmonic oscillator, coherent states, Time development of states and operators, Heisenberg, Schrodinger and interactive

pictures.		
Unit – 3	Number of lectures = 12	Title of the unit: Angular momentum

The angular momentum operators and their representation in spherical polar coordinates, Solution of Schrodinger equation for spherically symmetric (central) potentials, spherical harmonics, Hydrogen atom. Commutators and various commutation relations. Eigen values and eigenvectors of L2 and Lz.

Unit – 4	Number of	Approximation methods
	lectures = 10	

Time independent perturbation theory, non-degenerate case, first and second order perturbation, WKB Approximation: WKB method for one-dimensional problems, Application to barrier penetration, WKB method for three dimensional problems, Time-dependent perturbation theory: General expression for the probability of transition from one state to another, harmonic perturbation

12. Brief Description of self-learning / E-learning component

http://nptel.ac.in/courses/115106066/

https://ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2016/lecture-notes/

https://www.ks.uiuc.edu/Services/Class/PHYS480/qm PDF/QM Book.pdf

13. Books Recommended

1. Schiff. Quantum Mechanics. New Delhi: Tata McGraw-Hill.ISBN: 9780070702431, 9780070702431

2. B. Craseman and J.L. Powell. Quantum Mechanics. New Delhi: Narosa. ISBN-13: 978-0201059205

ISBN-10: 0201059207

3. S. Gasiorowicz. Quantum Mechanics. New York: John Wiley.ISBN: 978-0-471-05700-0

4. J.J. Sakurai. Modern Quantum Mechanics. Addison Wesley.ISBN-10 : 0201539292, ISBN-13 : 978-0201539295

5. P.M. Mathews and K. Venkatesan. Quantum Mechanics. New Delhi: Tata McGraw-Hill.ISBN 10: 0070965102ISBN 13: 9780070965102

6. Ghatak and Loknathan. Quantum Mechanics. ISBN-10: 9351382966, ISBN-13: 978-9351382966

7. M.P. Khanna. Quantum Mechanics. New Delhi: HarAnand.SBN-10: 812410400X, ISBN-13: 978-8124104002

8. V.K. Thankappan. Quantum Mechanics. New Delhi: New Age International.ISBN-10: 9386649217

ISBN-13 : 978-9386649218

9. N. Zettili. Quantum Mechanics: Concepts and Applications.ISBN-10 : 812656105X, ISBN-13 : 978-8126561056

1. Name of the D	epartment: Phys	ics				
2. Course	Quantum	L	Т	Р		
Name	Mechanics-					
	Lab					
3. Course Code	17080202	0	0 4			
4 Type of Cours	e (use tick	Core (1)	DSE ()	SEC ()		
mark)	e (use tiek		DOL			
5. Pre-requisite		18. Frequency	Even Od	d Either Every		
(if any)		(use tick marks)	(√) ()	Sem () Sem ()		
6. Total Number	of Lectures, Tut	orials. Practical				
Lectures = 0	<u>or Decearces</u> , 1 ac	Tutorials = 0	Practica	al = 52		
7. Course Descri	ption:	actical and simulation 1	mouvladga ab	out the reflection and		
transmission of a plan	will gailt the pro-	actical and simulation k at a 1D Woods-Sayon	notential Sch	rödinger Equation for		
arbitrary potential Ene	roy levels with co	ar a 1D woods-saxon	ons Quantum	mechanical scattering		
problem, of Electron	spin resonance-	determine magnetic fiel	ld as a funct	ion of the resonance		
frequency etc.	1	e				
8. Course Object	ives:					
1. To study Discrete en	ergy label in Quar	ntum mechanics				
2. To study quantum m	echanical scattering	ng problem				
3. Numerical and exac	t solution for Sch	prodinger equation for P	article in a bo	ox Quantum harmonic		
oscillator						
4. To study of Zeeman	Effect: with extern	nal magnetic field; Hyper	fine splitting			
9. Course Outco	mes (COs):					
1. Demonstrate the c	comprehensive a	nd theoretical knowle	dge of Quan	tum Mechanics and		
Schrödinger equation	s with Angular N	Momentum operator an	d representat	ion		
2. Various tools to cal	lculate Eigen val	lues and total angular n	nomentum of	particles		
3. Study of Approxim	nation Method ar	nd scientific Time inde	pdent and de	pendent perturbation		
theory			-			
4. To analyze quantum	n & Schrodinger	r equations based resea	rch and with	its applications		
10. List of Experin	nents					
1. Eigen Energy Solv	ver for Schrödin	ger Equation for arbit	rary potential	(Computational and		
simulation)						
2. GaAs Single Quantum Well (Computational and simulation)						
(Calculates the energy levels vs. well widths in a GaAs QW and their corresponding eigenfunctions)						
3. Discrete variable representation (DVR) in ID Quantum Mechanics (Computational and simulation)						
4. Gaussian wave packet as solution of the free Schrödinger equation (Computational and sillation)						
5. The quantum mechanical omoting problem (Computational and Simulation) 6. The quantum mechanical scattering problem (Computational and simulation)						
(In this practical we will calculate the reflection and transmission of a plane quantum wave at a 1D						
Woods-Saxon potentia	l using an appr	oach that considers the	e incoming.	he reflected and the		
transmitted wave parts)	6pp-			· · · · · · · · · · · · · · · · · · ·		
7. Numerical and exac	t solution for Sch	prodinger equation for P	article in a bo	ox Quantum harmonic		
oscillator (Computational and simulation)						

8. Excited States of Quantum Harmonic Oscillator using Raising Operator (Computational and simulation)

Laboratory Based Experiments:

9. Study of Electron spin resonance- determine magnetic field as a function of the resonance frequency

10. Study of Zeeman Effect: with external magnetic field; Hyperfine splitting

11. Quantum efficiency of CCD

Note: The list of the experiment given above should be considered as suggestive of the standard and available equipment. The faculty members are authorised to add or delete from this list whenever considered necessary.

11. Book Recommended

1. Schaum's outline of Programming with C++. J. Hubbard, 2000, McGraw-Hill Publication

2. An introduction to computational Physics, T. Pang, 2nd Edn., 2006, Cambridge Univ. Press

3. Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific & Engineering Applications: A. Vande Wouwer, P. Saucez, C. V. Fernández.2014 Springer.

4. Scilab (A Free Software to Matlab): H. Ramchandran, A.S. Nair. 2011 S. Chand & amp; Co.

5. A Guide to MATLAB, B.R. Hunt, R.L. Lipsman, J.M. Rosenberg, 2014, 3rd Edn., Cambridge University Press.

1. Name of the Department: Physics							
2. Course Electrodynamics &		L	Т		Р		
Name	Plasma Physics						
3. Course	17080203	3	0		0		
Code							
4. Type of Course (use tick mark)		Core (√)	DSE ()		SEC ()		
5. Pre-		6. Frequency	Even	Odd	Either	Every	
requisite		(use tick marks)	(√)	0	Sem ()	Sem	
(if any)						0	
7. Total Number of Lectures, Tutorials, Practical							
Lectures = 40		Tutorials = 0	Practical = 0				

8. Course Description:

This course aims to provide students with an introduction to the principles and behaviour of dynamical electric and magnetic systems, and a theoretical foundation in classical field theory. Plasma physics is an important subject for a large number of research areas. The primary learning outcome for this course is for the students to learn the basic principles and main equations of plasma physics, at an introductory level, with emphasis on topics of broad applicability.

9. Course Objectives:

To apprise the students regarding the concepts of electrodynamics and its use in various situations. To have a working understanding of the elements of Plasma Physics on topics including: Basic plasma properties; Motion of charged particles in magnetic field; Plasma waves and kinetic representation of plasmas.

10. Course Outcomes (COs):

1. Student will have understanding of evaluate fields and forces in Electrodynamics and Magneto dynamics using basic scientific method

2. This course will help student in critical thinking and problem solving based on electrodynamics using Maxwell's equation and Boundary Conditions.

Electrodynamics and plasma physics will have scientific potential to analyze scientific idea and explanation to conclusion method of Images and its applications in branches of Physical Sciences
 This course will develop Analytical/Scientific Reasoning in area of Electrodynamics and plasma physics.

11.	Unit wise	detailed content	
Unit-1		Number of lectures = 12	Title of the unit: Electrostatics
Flootri	Eiald G	ouse Low Differential	form of Gauss Law Electromagnetic scalar and vector

Electric Field, Gauss Law, Differential form of Gauss Law, Electromagnetic scalar and vector potentials, Maxwell's equations in terms of scalar and vector potentials, Non uniqueness of Electromagnetic potentials and concept of Gauge. Lorentz gauge and coulomb gauge. Boundary value

problem,	Poisson and	Laplace e	equations,	Electrostatic	potential	energy	and energy	density.	
r,		r	1		r				

Unit - 2	Number of lectures	Title of the unit: Method of Images
	= 10	

The method of electrical images. Point charge near an infinite grounded conducting plane, Spherical conductor near point charge: When the sphere is at zero potential or earthed, insulated conducting sphere near a point charge, when the sphere is kept insulated and carries a total charge e, Conducting sphere in a uniform electric field.

Unit - 3	Number of lectures	Title	of	the	unit:	Electromagnetic	Waves	and
	= 10	Radia	Radiation by Moving Charges					

Wave equation, Reflection and Refraction of electromagnetic waves at a plane interface between dielectrics, Wave propagation in a non-conducting and conducting media, Fresnel relations, Brewster's angle, Wave guides: TE and TM modes in rectangular wave guides; Moving point charges, Retarded potentials, Lienard- Wiechart potentials for a point charge, The fields of moving charge particles, Total power radiated by a point charge: Larmor's formula and its relativistic generalization.

Unit - 4	Number of lectures	Title of the unit: Plasma Physics
	= 8	

Elementary concepts, Plasma Oscillation, Electron oscillation in plasma, Electronic oscillations when the motion of ions is also considered. Derivation of plasma oscillation using Maxwell's equation, Propagation of Electromagnetic waves in plasma containing a magnetic field Quasi neutrality of plasma, Debye shielding distance

12. Brief Description of self learning / E-learning component

http://nptel.ac.in/syllabus/95102023/

https://nptel.ac.in/courses/115102020/

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-522-space-propulsion-spring-2015/lecture-notes/MIT16_522S15_Lecture8.pdf

13. Books Recommended

- 1. Classical Electrodynamics by J.D. Jackson. ISBN-13: 978-8126510948
- 2. Introduction to Electrodynamics by A. Z. Capri and P. V. Panat. ISBN 13: 9788173193293
- 3. Electrodynamics by S. P. Puri. ISBN NO. 9781842656587
- 4. Introduction to Electrodynamics by D. J. Griffiths. ISBN-13: 978-0138053260
- 5. Introduction to Plasma Physics by F. F. Chen. ISBN 978-1-4757-0459-4
- 6. Introduction to Plasma Theory by D. R Nicholson. ISBN-13: 978-0471090458

9. Measurement of charge sensitivity, current sensitivity and CDR of Ballistic Galvanometer

- 10. To verify Brewster's Law and to find the Brewster's angle.
- 11. To study the polarization of light by reflection and determine the polarizing angle for air-glass interface.
- 12. To study the reflection, refraction of microwaves
- 13. Production and characterization of plasma

Note: The list of the experiment given above should be considered as suggestive of the standard and available equipment. The faculty members are authorised to add or delete from this list whenever considered necessary.

12. Book Recommended:

1. Advanced Practical Physics for students, B.L.Flint & H.T.Worsnop, 1971, Asia Publishing House.

2. Engineering Practical Physics, S. Panigrahi and B.Mallick, 2015, Cengage Learning India Pvt. Ltd.

3. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed.2011, Kitab Mahal.

4. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press

1. Name of the Department: Physics								
2. Course Name	Atomic and	L ?			Р			
	Molecular							
	Physics							
3. Course	17080204	3	0		0			
Code								
4. Type of Course (use tick		Core ($$)	DSE ()		SEC ()			
mark)								
5. Pre-requisite		6. Frequency	Even	Odd	Either	Every		
(if any)		(use tick marks)	0	()	Sem ()	Sem		
						0		
7. Total Number of Lectures, Tutorials, Practical								
Lectures = 40		Tutorials = 0	Practical = 0					
8. Course Description:								

Atom and molecule are the fundamental unit for all matters in universe. Matter, whatever the states, is made of atoms. The properties of all matters are governed by the electronic structure of atom and molecule. They have individual properties like electronic, magnetic and optical properties, which are quite different from the collective properties of matter made of atoms and molecules. This course will enlighten the knowledge of atoms and molecules and build up the pre-requisite knowledge for all science and engineering field.

9. Course Objectives:

1.Comparing between atomic emission spectroscopy and atomic absorption spectroscopy; Optical spectroscopy, Atomic spectrum Molecular spectroscopy

- 2. Theory of magnetic energy, Anomalous Zeeman's effect and Landue splitting factor.
- 3. Molecular Spectra of diatomic molecules Vibrational and Rotational energy levels.
- 4.To learn basics of NMR & ESR.

10. Course Outcomes (COs):

After going through this course, the students

- 1. Will acquire the knowledge of atoms and molecules and their significance in scientific studies
- 2. Understand the spectroscopy techniques to study various type of spectra
- 3. Learn and acquire skills to demonstrate and apply these techniques research and development
- 4. Will be able to utilize knowledge for innovation and scientific understanding for the benefit of society

11. Unit wise detailed content

110	Ont whise deta	incu conten	l C	
Unit-1		Number	of	Title of the unit: Atomic Physics
		lectures =	11	

Space Quantisation and Stern-Gerlach Experiment, L-S And J-J Coupling: Terms of Equivalent and Non-Equivalent Electron Atom, Breit's Scheme, Normal and Anomalous Zeeman Effect, Paschen-Back Effect And Stark Effect, Hyperfine Structure Of Spectral Lines: Isotope Effects, Nuclear spin and Hyperfine Splitting, Intensity Ratio and Determination Of Nuclear Spin.

Unit - 2	Number of	Title of the unit: Microwave and Infra-Red Spectra
	lectures = 10	

Types Of Molecules, Diatomic Molecule as Rigid Rotator, its Energy Level, Spectra and Intensities Of Spectral Lines, Effect of Isotopic Substitution, Diatomic Molecule as Non-Rigid Rotator.

Vibrating Diatomic Molecule: Energy of A Diatomic Molecule, Simple Harmonic Oscillator, Anharmonic Oscillator, Diatomic Vibrating Rotator.

Unit - 3	Number	of	Title	of	the	unit:	Electronic	Spectra	of	Diatomic
	lectures =	10	Moleo	cules	5					

The Born-Oppenheimer Approximation, Vibrational Coarse Structure: Progressions, Intensity of Vibrational-Electronic Spectra: The Franck-Condon Principle, Dissociation Energy an Dissociation Products, Rotational Fine Structure Of Electronic-Vibration Transitions, The Fortrat Parabola, Predissociation. Electronic Structure Of Diatomic Molecules.

Unit - 4	Number of	Title of the unit: Raman Spectroscopy
	lectures = 09	

Raman Spectroscopy, Experimental Arrangement For Raman Spectra, Classical Theory Of Raman Effect, Quantum Theory of Raman Effect, Rotational Raman Spectra, Vibrational Raman Spectra and Molecular Structure.

12. Brief Description of self learning / E-learning component

For understanding the basic concepts in detail, students may get the study materials from these E-learning links

https://ocw.mit.edu/courses/physics/

https://nptel.ac.in/courses/104104085/

https://nptel.ac.in/courses/115105100/56

13. Books Recommended

3.

1. Collin N Banwell and Elaine M McCash, Fundamentals of Molecular Spectroscopy 4th edition: Tata McGraw- Hill (ISBN: 978-9352601738).

- 2. Raj Kumar, Atomic, Molecular Spectra: Laser, KedarNath Ram Nath (ISBN: 978-9380803302).
 - H Kaur, Spectroscopy: Pragati Prakashan (ISBN: 978-9386306425).
- 4. Atomic spectra & atomic structure, Gerhard Hertzberg: Dover publication, New York (ISBN: 978-0486601151)

1. Name of th	e Department: Phy	ysics					
2. Course Name	Atomic and	L	Т		Р		
	Molecular						
	Physics-Lab						
3. Course	17080206	0	0 4				
Code							
4. Type of C	Course (use tick	Core (√)	DSE ()		SEC ()		
mark)	I					1	
5. Pre-		6. Frequency	Even	Odd	Either	Every	
requisite		(use tick marks)	(1)	0	Sem ()	Sem ()	
(if any)							
7. Total Num	ber of Lectures, Tu	utorials, Practical					
Lectures = 0		Tutorials = 0	Ho	urs = 52	2		
8. Course Des	scription:						
Atom and molecule	are the fundamenta	l unit for all matters in u	niverse. N	latter, w	hatever the	e states, is	
made of atoms. Th	e properties of all	matters are governed by	the elect	ronic st	ructure of	atom and	
molecule. They hav	e individual proper	ties like electronic, mag	netic and	optical p	properties,	which are	
quite different from	the collective prop	erties of matter made of a	atoms and	molecu	les. This c	ourse will	
enlighten the practic	cal knowledge of at	oms and molecules by le	earning the	rough ex	speriments	and build	
up the pre-requisite	knowledge for all s	cience and engineering fi	eld.				
9. Course Ob	ojectives:						
1.	Compa	aring between atomic	emission	spectro	oscopy an	d atomic	
absorption spec	troscopy; Optical sp	ectroscopy, Atomic spec	trum				
2.	Molec	cular spectroscopy					
3.	Molect	ular Spectra of diatomic	molecule	s Vibrat	ional and I	Rotational	
energy levels.							
10. Course Ou	tcomes (COs):						
Acquire practical kr	nowledge of						
1.		Measur	rement an	d analys	sis of diffe	rent types	
of spectra				2			
2.		Applic	ations of	Rama	n spectro	scopy in	
study of molecu	ıles						
3		State a	nd explai	the key	v properties	s of many	
electron atoms							
A Evoluin the observed dependence of stormic							
spectral lines or	externally applied	electric and magnetic field	lds		Pendence	or atomic	
5	i enternany applied	Ctoto	and justi	fy tha	salaction	rulas for	
various ontical o	spectrosconies in ter	state symmetries of	molecula	r vibrati	ons	10105 101	
11 List of E	omimonta (Douforme	at logat aight amarine	nta)	, vioiuti	UID .		
1 Study of E	ine structure of U	a reast eight experime	nstant d	aviation	nenectron	neter	
$\begin{array}{c} 1. \text{Study of } \Gamma \\ 2 \text{Study of } \Pi \end{array}$	Ine su uciule of my	using Fohm Donot's Im	torforom	eviation	i specuoli	10101	
	2. Study of Hyperfine structure using Febry Perol's Interferometer						

3. Raman scattering using a Laser source

- 4. Measurement and analysis of atomic spectra
- 5. Measurement and analysis of electronic spectra of Molecules
- 6. Measurement and analysis of electronic spectra of liquids
- 7. Measurement and analysis of vibrational spectra of Molecules
- 8. Measurement and analysis of rotational spectra of Molecules
- 9. Measurement and analysis of Raman spectra of liquids
- 10. Measurement and analysis of Raman spectra of Molecules
- 11. Measurement and analysis of absorption spectra of solids
- 12. Determination of Hall coefficient
- 13. Analysis of Rotational spectrum of N₂ (Raman Spectrum)
- 14. Analysis of Rotational –vibrational spectrum of di-atomic molecule.
- 15. Analysis of Band spectrum of molecules.

Note: The list of the experiment given above should be considered as suggestive of the standard and available equipment. The faculty members are authorised to add or delete from this list whenever considered necessary.

For understanding the basic concepts in detail, students may get the study materials from these E-learning links

https://ocw.mit.edu/courses/physics/

https://nptel.ac.in/courses/104104085/

https://nptel.ac.in/courses/115105100/56

12. Books Recommended

- 1. Advanced Practical Physics for students, B.L. Flint & H.T. Worsnop (1979), Asia Publishing House (ISBN-13 : 978-0423738902)
- 2. Advanced level Physics Practical's, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted (I 985), Heinemann Educational Publishers
- 3. A Text Book of Practical Physics, Indu Prakash and Ramakrishna, I I th Edition, (2011), Kitab Mahal, New Delhi.(ISBN-13 : 978-8122500844; ISBN-10 : 8122500846)
- Physics Lab Manual, Misra and Misra, (2000), South Asian Publishers (ISBN 10: <u>8170032962</u> / ISBN 13: <u>9788170032960</u>)
- 5. Experiments in Modern Physics, H. Mark, N.Thomas Olson (1966), McGraw Hill (ISBN 10: 007040383X ISBN 13: 9780070403833)
- 6. Advanced Practical Physics Vol. II, S.P.Singh (2017), Pragati Prakashan (ISBN:: 978-93-86306-93-7;)

Discipline Specific Elective Course (DSEC)

Semester-III

Electronics

1.	1. Name of the Department: Physics								
2.	Course Name	Semiconductor	L	Т		Р			
		Devices							
3.	Course Code	17080303	3	0		0			
4.	Type of Course (use tick mark)		Core ()	DSE $()$	DSE $(\sqrt{)}$		SEC ()		
5.	Pre-requisite	Physics at	6. Frequency	Even ()	Odd	Either	Every		
	(if any)	graduation level	(use tick		()	Sem ()	Sem		
			marks)				0		
7.	Total Number of	Lectures, Tutorials	, Practical						
Le	ctures = 40		Tutorials = 0	Practi	cal = 0				
8.	8. Course Description:								

The course is intended to provide an understanding of the semiconductor devices used in the current semiconductor industry. It caters to undergraduate and graduate students with a diverse background in Materials Science, and Physics. The course provides the students with the basic physics behind semiconductor materials, types of semiconductors, and the reason for the dominance of silicon in the electronics industry. The course also covers the basics of devices with emphasis on their electronic characteristics. Optical devices like LEDs, lasers, solar cells, and their properties will also be explained.

9. Course Objectives:

- 1. To study the basics of electronic components
- 2. To study the basic concept and characteristics of electronic devices and circuits.
- 3. To observe the characteristics of optical devices like LED, lasers and Solar cells
- 4. To get familiar with the different types of operational amplifiers

10. Course Outcomes (COs):

After successful completion of the course, students will be able to

- 1. Apply the concept of semiconductor physics
- 2. Apply the concepts of basic electronic devices to design various electronic circuits
- 3. Understand operation of diodes, transistors (JFET, MOSFET) in order to design basic and advanced circuits
- 4. Understand the working principle and uses of Solar Cell, PIN diodes and LEDs in practical life
- 5. Design of electronic circuits using Op-Amp for various practical applications

11. Unit wise detailed content

Unit-1	Number of lectures = 12	Title of the unit: Basic Semiconductor Devices
--------	-------------------------	--

P-N junction diode, Capacitance of p-n junctions, switching diodes, Clippers & Clampers, Photoconductors, photodiode, light emitting diodes and liquid crystal display, Junction Field Effect Transistor (JFET) : Basic structure & Operation, pinch off voltage, Single ended geometry of JFET, Volt Ampere characteristic, Transfer Characteristics, JFET as Switch and Amplifier. MOSFET: Enhancement MOSFET, Threshold Voltage, Depletion MOSFET, comparison of p & n Channel FET, SCR, 4-layer pnpn devices, Tunnel diode

Unit - 2Number of lectures = 8Title of the unit: Optoelectronic Devices

Radiative and non-radiative transitions, Solar Cell: basic characteristics, radiation effects and fill factor, Light dependent resistance (LDR), photodiodes, PIN diodes, metal semiconductor, avalanche photodiode, Light emitting diodes (LEDs), semiconductor diode lasers, Photo transistor.

Unit – 3 Number of lectures = 10 Title of the unit: MOS systems and SPICE

Metal semiconductor contacts, Ideal MS contacts, Schottky barriers and ohmic contacts, Oxide and interface charges, Origin of oxide charges, MOS structure, Effect of bias voltage Capacitance of MOS system, Introduction to electrical computer simulation, SPICE and its evaluations, Electrical circuit specifications, The SPICE DC analysis.

Unit - 4Number of lectures = 10Title of the unit: Operational Amplifier

Differential Amplifier: Circuit configuration, dual input balanced output different amplifier, Inverting and Non-inverting inputs, CMRR, Operational Amplifiers: Block diagram, open and close loop configuration, inverting & non-inverting amplifier, Op-amp with negative feedback Voltage series feedback, Effect of feedback on closed loop voltage gain, Input resistance, output resistance, band width, output offset voltage, Measurements of Op-amp parameters. Op-amp Application: D.C. and A.C. amplifier, summing, scaling and Averaging amplifier, Integrator, Differentiator, Electronic analog computation comparator.

12. Brief Description of self-learning / E-learning component

For understanding the basic concepts in detail, students may get the study materials from these Elearning links

https://ocw.mit.edu/courses/physics/

https://nptel.ac.in/courses/117107094/

https://www.youtube.com/watch?v=CeD2L6KbtVM

13. Books Recommended

- 1. J. Millman and C. C. Halkies, Integrated Electronics. Tata McGraw-Hill, ISBN: 978-0-07-462245-2.
- 2. R. P. Jain. Modern Digital Electronics, Tata McGraw Hills, ISBN: 9780070669116
- 3. Malvino and Leach, Digital Electronics, ISBN- 978-0-07-014170-4
- 4. S. M. Sze, Semiconductor Devices: Physics and Technology, ISBN-13: 978-8126516810
- Ramakanth A. Gayakwad, Op-Amps & Linear Integrated Circuits. 2nd ed, ISBN-13: 978-8120320581
- 6. A.P. Malvino and Donald, Principal and Application in Electronics. Tata McGraw-Hill, ISBN : 0070141703

7. J. D. Rayder, Fundamental of electronics, ISBN-13: 978-8120300828

1.	. Name of the Department: Physics							
2.	Course Name	Semiconductor	L	Т		Р		
		Devices Lab						
3.	Course Code 17080304		0	0		4		
4.	Type of Course (use tick mark)		Core ()	DSE ($$)		SEC ()		
5.	Pre-requisite		6. Frequency	Even ()	Odd	Either	Every	
	(if any)		(use tick		()	Sem ()	Sem	
			marks)				0	
7.	7. Total Number of Lectures, Tutorials, Practical							
Lectures = 0			Tutorials = 0	Practic	cal = 52			
8.	8. Course Description:							

In this course students will gain practical knowledge about various semiconductor and optoelectronic devices like JFET, MOSFET, LED etc. and use of op amp for different arithmetic operations.

9. Course Objectives:

To study the characteristics of JFET, MOSFET, SCR, Solar cell

To use Op-amp for different arithmetic operations, square, ramp generator and Wein bridge oscillator

10. Course Outcomes (COs):

After successful completion of the course, students will be able to

Correlate the theoretical concepts and identify its practical applications through experiment procedure and results.

11. List of Experiments

1. To study the characteristics of Junction Field Effect Transistor.

2. To study the characteristics of Metal Oxide Semiconductor Field Effect Transistor

3. To study the characteristics of SCR and its application as a switching device.

4. To use Op-Amp for different Arithmetic Operations.

5. To use Op-Amp as Square, Ramp Generator and Wien Bridge Oscillator

6. To study the characteristics of a solar cell and calculate its fill factor.

7. To design an (i) inverting amplifier and (ii) non-inverting amplifier, of a given gain using operational amplifier.

8. To use Op-Amp as Full Wave Rectifier.

9. To study the characteristics of optoelectronics Devices (LED, photo-detector).

10. To design combinational Logic Circuits.

Note: The list of the experiment given above should be considered as suggestive of the standard and available equipment. The faculty members are authorised to add or delete from this list whenever considered necessary.

12. Book Recommended:

- 1. R. A. Dunlup. Experimental Physics: Modern Methods. New Delhi: Oxford University Press, ISBN- 0195049497
- 2. B. K. Jones. Electronics for Experimentation and Research. Prentice-Hall, ISBN 13: 9780132507547

1. Name of the Department: Physics								
2.	Course Name	Digital	L		Т		Р	
		Electronics						
3.	Course Code	17080305	3		0 0			
4. Type of Course (use tick mark)		Cor	re ()	DSE ($$)	DSE (√)		SEC ()	
5.	Pre-requisite	Physics at	6.	Frequency	Even ()	Odd	Either	Every
	(if any)	graduation level		(use tick		()	Sem ()	Sem
	-			marks)				0
7.	Total Number of I	Lectures, Tutorials	s, Pra	ctical				
Le	Lectures = 40 Tutorials = 0 Practical = 0							
8. Course Description:								
Th Flo	This course will deepen your understanding of the Number system, Boolean Algebra, logic gates, Flip Flops and A/D and D/A convertors							

9. Course Objectives:

1. To study the working principle logic gates.

- 2. To study the basic of flip-flops, memory devices and its related electronic circuits.
- 3. To understand the different types of logic circuits and its various application.
- 4. To study the basics of A/D and D/A convertors.

5. To study the basic of shift registers and counters

10. Course Outcomes (COs):

After successful completion of the course, students will

- 1. have a basic knowledge of various number system and Boolean Algebra.
- 2. understand the concept of working of different types of logic gates.
- 3. be able to design the electronic circuits like Flip Flop, RAM, ROM using different types of logic gates.
- 4. Understand the basic of shift registers & counters and their uses in design of advance electronic equipments
- 5. know basic D/A & A/D Converters and their applications in communication system.

11. Unit wise detailed content

Unit-1	Number of lectures = 12	Title of the unit	: Various	Number	system,	Boolean
		Algebra and Com	binational	Logic		

Various Number system and their arithmetic: binary number system, 2's compliment, Octal number system, hexadecimal number system, BCD codes, Gray codes, Review of Boolean Laws & Theorems; Logic Families; TTL NAND operation, Gate circuits; Standard forms of Boolean expressions (SOP & POS form) and their implantation; Karnaugh simplification of SOP & POS expressions, Don't care conditions. Multiplexer and Demultiplexer; Comparators, Encoder and Decoder; Parity generators and checkers, Adder-Subtract circuits

Unit - 2 Number of lectures = 10 Title of the unit: Flip Flops and Memory Devices

Flip-Flops: Clock waveform and its characteristics; RS, JK, JK master slave, Timer-555, D and T Flip Flops. Memories: ROM, PROM and EPROM, RAM, Static and Dynamic Random Access Memories (SRAM and DRAM), content addressable memory, other advanced memories.

Unit - 3Number of lectures = 8Title of the unit: Shift Registers and Counters

Types of Registers: Buffer register, control register, Shift Registers (SISO, SIPO, PISO and PIPO), Control shift register; Counters: Modulus of Counter; ripple counters, ring counter, Asynchronous 2bit, Up/Down and decade counter; Design of synchronous counter (Mod-8), TTL counter.

Unit - 4Number of lectures = 10Title of the unit: D/A and A/D Converters

D/A Convertors: Weighted Register Network and R-2R Network, A/D Converters: Parallel comparator A/D converter, successive approximation A/D converter, Counting A/D converter, Dual slope A/D converter, A/D converter using voltage to frequency and voltage to time conversion – accuracy and resolution. D/A converter resistive network, accuracy and resolution.

12. Brief Description of self learning / E-learning component

For understanding the basic concepts in detail, students may get the study materials from these Elearning links https://ocw.mit.edu/courses/physics/

https://nptel.ac.in/courses/117107094/

https://www.youtube.com/watch?v=CeD2L6KbtVM

13. Books Recommended

- 1. Integrated electronics Millman & Halkias, Tata McGraw-hill, ISBN-13: 978-0070151420
- 2. Microprocessor and Interfacing D. V Hall, ISBN-13: 978-0070601673
- 3. Micropressor Architecture Prog. & Appls., S. Goankar, Wiley-Estern, ISBN-13: 978-8187972099
- 4. Digital Computer Electronics AP. Malvino, ISBN-13: 978- 0028005942
- 5. Advanced Electronic Communication system by Kennedy, ISBN-13: 978-9352606603
- 6. Modern digital electronics by R. P. Jain, ISBN-10: 0070681074

1.	1. Name of the Department: Physics								
2.	Course Name	Digital	L	Т		P			
		Electronics Lab							
3.	Course Code	17080306	0	0		4			
4.	Type of Course (u	Core ()	DSE (DSE (√)		SEC ()			
5.	Pre-requisite		6. Frequency	Even () Odd	Either	Every		
	(if any)		(use tick		(√)	Sem ()	Sem		
			marks)				0		
7.	Total Number of	Lectures, Tutorials	, Practical						
Le	ctures = 0		Tutorials = 0	Practical = 52					
8.	8. Course Description:								
Th	Through this source students will goin prostical knowledge shout singuit design and working of flin								

Through this course students will gain practical knowledge about circuit design and working of flip flops, UJT, coder –decoder, DAC, ADC etc.

9. Course Objectives:

To study JK, SR flip flop, multiplexer, demultiplexer, decoder, phase shifter and UJT.

To study the working of DAC and ADC.

To determine the CMRR, Input offset voltage and input off set current of an Op-amp.

To determine hall coefficient

10. Course Outcomes (COs):

After successful completion of the course, students will be able to

Correlate the theoretical concepts of digital electronics and identify its practical applications through experiment procedure and results.

11. List of Experiments

- 1. To study SR and JK flip flop circuits using logic gates.
- 2. To study the UJT Characteristics.
- 3. To study the use of Digital Comparator.
- 4. To study use of multiplexer, de-multiplexer, decoder and phase shifter.
- 5. To measure input offset voltage, input bias current, input offset current and CMRR of Op-Amp.
- 6. To study the working of DAC and measure resolution and setting time of DAC.
- 7. To study working of ADC and measure resolution and conversion time of ADC.
- 8. Two probe method for resistivity measurement.
- 9. To study Hall effect in semiconductor to determine Hall voltage, concentration of charge carriers and the type of semiconductor etc.
- 10. To measure the band gap of Germanium using four probe method.

Note: The list of the experiment given above should be considered as suggestive of the standard and available equipment. The faculty members are authorised to add or delete from this list whenever considered necessary.

12. Book Recommended:

- 1. R. A. Dunlup. Experimental Physics: Modern Methods. New Delhi: Oxford University Press, ISBN- 0195049497
- 2. B. K. Jones. Electronics for Experimentation and Research. Prentice-Hall, ISBN 13: 9780132507547

1.	1. Name of the Department: Physics							
2.	Course Name	Analog and	L	Т		Р		
		Digital	-			-		
		Communication						
3.	3. Course Code 17080307		3	0	0		0	
4.	. Type of Course (use tick mark)		Core ()	DSE $()$		SEC ()		
5.	Pre-requisite	Physics at	6. Frequency	Even ()	Odd	Either	Every	
	(if any)	graduation level	(use tick		()	Sem ()	Sem	
			marks)				0	
7.	Total Number of	Lectures, Tutorials	, Practical					
Lectures = 40		Tutorials = 0	Practio	cal = 0				
8.	8. Course Description:							
Th	This course will deepen your understanding of the different processes to grow the single crystal							

This course will deepen your understanding of the different processes to grow the single crystal silicon which will help you to fabricate the different types of integrated circuits (ICs) for the particular applications. It also helps you to understand the techniques for making contact between

semiconductor and metals.

9. Course Objectives:

- 1. To study the basics of analog communication system
- 2. To study the basics of digital modulation system.
- 3. To understand the sampling and quantization.
- 4. To get familiar with ASK, FSK, and PSK.

10. Course Outcomes (COs):

After successful completion of the course, students will be able to

- 1. have a basic knowledge of analog and digital communication system
- 2. understand the techniques behind the sampling and quantization in digital communication
- 3. know the working principle of ASK, FSK, & PSK and their practical applications

4. have a basic knowledge of information theory and its uses in communication

11. Unit wise detailed content Unit-1 Number of lectures = 10 Title of the unit: Analog Communication

Basics of Communication system, Need of Modulation, Types of analog modulation, Amplitude Modulation, De-modulation of AM waves, Frequency Modulation, Phase Modulation, Transmitter (Block Diagram) and its characteristics feature, Super heterodyne receiver and its characteristics, Radar & Radar range equation.

Unit – 2 Number of lectures = 10 Title of the unit: Digital Modulation System

Digital Modulation System: Sampling Theorem, Signal reconstruction in Time Domain, Practical and flat-top sampling, sampling of band pass signal; types of analog pulse modulation, method of generation and detection of PAM, PWM and PPM, spectra of pulse modulated system; Discretization in time and amplitude, Signal to quantization noise ratio, non-uniform quantizer; Encoding and Pulse Code Modulation, Band width of PCM, DPCM, DM, Idling noise and slope overload.

Unit - 3Number of lectures = 10Title of the unit: Digital Modulation Techniques

Digital Modulation Technique: Fundamental of TDM, Electronic Commutator, Types of Digital Modulation, Waveform for ASK, FSK, and PSK, Differential Phase Shift Keying, QPSK and MSK

Unit - 4Number of lectures = 10Title of the unit: Information Theory

Information Theory: Concept of Information Measure, Entropy and Information rate, conditional entropy and redundancy, Source coding, Fixed and variable length codes, Source coding theorem, Shannon–Fano and Huffman coding for 1st , 2nd and 3rd order extension, Mutual information and channel capacity of discrete memory less channel, Hartley – Shannon Law

12. Brief Description of self-learning / E-learning component

For understanding the basic concepts in detail, students may get the study materials from these Elearning links https://ocw.mit.edu/courses/physics/

https://nptel.ac.in/courses/108108111/3

https://nptel.ac.in/courses/117103066/7

13. Books Recommended

- 1. J. Millman and C. C. Halkies, Integrated Electronics. Tata McGraw-Hill, ISBN: 9781405127875
- 2. S. M. Sze, Semiconductor Devices: Physics and Technology, ISBN- 13: 978-0470537947
- 3. Ramakanth A. Gayakwad, Op-Amps & Linear Integrated Circuits. 2nd ed. 1991, ISBN-10: 0136371744
- 4. A.P. Malvino and Donald, Principal and Application in Electronics. Tata McGraw-Hill, ISBN : 0070141703
- 5. Thomas L. Floyd. Digital Electronics. New Delhi: Person, ISBN-13: 978-0132737968
- 6. A.D. Helfrick and W.D. Cooper, Modern electronics Instrumentation and Measurements Techniques, New

Delhi: PHI, ISBN: 978-81-317-0888-0

7. J. D. Rayder, Fundamental of electronics, ISBN-13: 978-8120300828

1.	1. Name of the Department: Physics								
2.	Course Name	Analog and	L	Т		Р			
		Digital							
		Communication							
3.	Course Code	17080308	0	0		4			
4.	. Type of Course (use tick mark)		Core ()	DSE $()$		SEC ()			
5.	Pre-requisite		6. Frequency	Even ()	Odd	Either	Every		
	(if any)		(use tick		()	Sem ()	Sem		
			marks)				0		
7. Total Number of Lectures, Tutorials, Practical									
---	--------------------------	----------------	--	--	--	--			
Lectures = 0	Tutorials = 0	Practical = 52							
8. Course Description:									
Through this course students will gain practical knowledge about modulation and demodulation of the signals using techniques like AM, FM, PAM, PPM, PWM, etc.									
9. Course Objectives:									
• To study amplitude modulated (AM	(I) and frequency modula	ated signals.							
• To study demodulation of amplitud	le modulated (AM) signa	als.							

- To determine modulation index in amplitude modulation.
- To study the characteristics of multivibrators

10. Course Outcomes (COs):

After successful completion of the course, students will be able to

Correlate the theoretical concepts of Analog and Digital Communication and identify its practical applications through experiment procedure and results.

11. List of Experiments

- i. Study of linear and square wave detector.
- ii. Generation of amplitude modulated (AM) signals.
- iii. To study the demodulation of amplitude modulated (AM) signals.
- iv. To study the generation and detection of frequency modulated (FM) signals.
- v. To observe the effect of modulation index in amplitude modulation.
- vi. To understand the demodulation of an frequency modulated (FM) signals.
- vii. Study of super heterodyne receiver.
- viii. To study pulse amplitude, Pulse width and Pulse position modulations.
 - ix. To study the frequency response of an operational amplifier.
 - x. To study the characteristics of multivibrators bistable, Astable, monostable.

Note: The list of the experiment given above should be considered as suggestive of the standard and available equipment. The faculty members are authorised to add or delete from this list whenever considered necessary.

12. Book Recommended:

- R. A. Dunlup. Experimental Physics: Modern Methods. New Delhi: Oxford University Press, ISBN- 0195049497
- 2. B. K. Jones. Electronics for Experimentation and Research. Prentice-Hall, ISBN 13: 9780132507547

Condensed Matter Physics

1.	1. Name of the Department: Physics						
2. Co	urse Name	Basic Concepts in Condensed Matter Physics	L	Т	Р		
3. Code	Course	17080309	3	0	0		
4.	Type of Co	ourse (use tick mark)	Core ()	DSE ($$)	SEC ()		

5. Pre- requisite (if any)		6. Frequency (use tick marks)	Even ()	$\begin{array}{c} \text{Odd} \\ (\sqrt{)} \end{array}$	Either Sem ()	Every Sem ()	
7. Total Nur	nber of Lectures, Tutorials, Prac	etical					
$\frac{\text{Lectures} = 40}{8}$	againtion	Tutorials = 0	Pr	actical	l = 0		
o. Course Do							
This course intend	s to provide knowledge about the l	basic elements of cond	ensed 1	natter j	physics.		
9. Course O	bjectives:						
 This cours This cours physics. This cours physics. This cours This cours 	e imparts knowledge about concep e aims to provide a general introdu e aims to provide an introduction t e aims to set a correlation between	otual condensed matter action to theoretical con o the experimental top the academic and inve	physic ncepts ics in c estigation	s. in conc condens onal stu	lensed m sed matte udies.	natter er	
10. Course O	utcomes (COs):						
experimentally 2.Students will be based upon the kno 3.Students will be heats of the solids. 4.Based upon the of bonding 11. Unit wise Unit-1 Diffraction of elec and classification of diffraction, Bragg' factors of SC, FCC	1. The students will be able to apply the theoretical concepts of X-ray diffraction in crystals experimentally 2. Students will be able to explain and differentiate between the metals, insulators and semiconductors based upon the knowledge of band theory 3. Students will be able to understand the thermal properties of the solids and calculate the specific heats of the solids. 4. Based upon the theoretical concepts, students can calculate the crystal energies and analyze the types of bonding 11. Unit wise detailed content Unit-1 Number of lectures = 10 Title of the unit: Crystal Lattices Diffraction of electromagnetic waves by crystals: X-rays, Electrons and Neutrons, Symmetry operations and classification of Bravais lattices, common crystal structures, reciprocal lattice, Brillouin zone, X-ray diffraction						
Unit - 2	Number of lectures = 10	Title of the unit: Cry	ystal B	inding	and La	ttice	
Bond classification van der Waals, hyd	Bond classifications – types of crystal binding, covalent, molecular and ionic crystals, London theory of van der Waals, hydrogen bonding, cohesive and Madelung energy.						
Failure of the static lattice model, adiabatic and harmonic approximation, vibrations of linear monoatomic lattice, one-dimensional lattice with basis, models of three-dimensional lattices, quantization of lattice vibrations, Einstein and Debye theories of specific heat, phonon density of states, neutron scattering.							
Unit - 3	Number of lectures = 12	Title of the unit: Me Solids	etals an	d Ban	d theory	y of	
Drude theory, DC Dirac distribution, model.	Solids Drude theory, DC conductivity, magneto-resistance, thermal conductivity, thermoelectric effects, Fermi- Dirac distribution, thermal properties of an electron gas, Wiedemann-Franz law, critique of free-electron model.						
remote potential	una bioens meorem, weak pote	initial approximation, (actionty	01 514		morent	

dimensions, energy gaps, Fermi surface and Brillouin zones. Origin of energy bands and band gaps, effective mass, tight-binding approximation and calculation of simple band-structures. Motion of electrons in lattices, Wave packets of Bloch electrons, semi-classical equations of motion, motion in static electric and magnetic fields, theory of holes, cyclotron resonance.

Unit - 4	Number of lectures = 8	Title of the unit: Defects and Diffusion in
		Solids and Semiconductors

Point defects: Frenkel defects, Schottky defects, examples of colour centres, line defects and dislocations.

General properties and band structure, carrier statistics, impurities, intrinsic and extrinsic semiconductors, drift and diffusion currents, mobility, Hall effect.

12. Brief Description of self learning / E-learning component

https://nptel.ac.in/courses/115/105/115105099/

https://www.youtube.com/watch?v=RImqF8z91fU https://www.youtube.com/playlist?list=PL64fZsc8IYkVkb4Uf0esPJ5GUq6g0Og9s

13. Books Recommended

1. Introduction to Solid State Physics, Charles Kittel, John Wiley and Sons, ISBN: 978-8126535187

2. Solid State Physics, Neil W. Ashcroft and N. David Mermin, Holt, Rinehart and Winston, ISBN: 978-0030839931

3. Applied Solid State Physics, Rajnikant, Wiley India, ISBN: 9788126522835

4. Solid State Physics, S O Pillai, New Age International Publishers, ISBN: 978-9386070920

5. Elements of Solid State Physics, J P Srivastava, PHI Learning Private Limited, ISBN: 978-81-203-5066-3

1. Name of the Department: Physics								
2. Cou Name	irse	Basic Concepts in Condensed Matter Physics Lab	L		Т		Р	
3. Code	Course	17080310	0		0		4	
4.	Type of C	ourse (use tick mark)	Core	0	DSE (√)	SEC ()	
5. requisi	Pre- ite		6. (1	Frequency ise tick	Even ()	$\begin{array}{c} \text{Odd} \\ (\sqrt{)} \end{array}$	Either Sem ()	Every Sem ()

(if any)		marks)				
7. Total N	umber of Lectures, Tutor	ials, Practical	1		I	
Lectures = 0		Tutorials = 0	Pr	actical =	= 52	
8. Course	Description:					
In this course stu of semiconducto	dents will gain practical k devices	mowledge about lattice	dynami	cs, band	gap and b	asic concepts
9. Course	Objectives:					
 The major of matter physics th While perform To make stude 	jective of this course is t rough a standard set of exp ing these experiments stuc ents practise thinking and t	to make students under periments. dents must correlate the o have hands on experie	rstand th m with the second second	ne basic the corre	concepts of sponding to spondi	of condensed heory
4. To make stude	nt acquire, process, analys	se and interpret the data				
10. Course	Dutcomes (COs):					
After successful 1. Distinguish be 2. Analyze the m 3. apply differen 4. correlate the th	 After successful completion of the course, students will be able to 1. Distinguish between the type of semiconductors and find their band gap 2. Analyze the mono and di-atomic lattice 3. apply different experimental techniques to calculate scientific parameters 4. correlate the theoretical concepts with the experiments 					
11. List of I	xperiments					
 To study Hall effect in semiconductor to determine Hall voltage, concentration of charge carriers and the type of semiconductor etc. To measure the band gap of Germanium using four probe method. Study of dispersion relation for the mono-atomic lattice – comparison with theory. Determination of cut-off frequency of the mono atomic lattice Study of the dispersion relation for the di-atomic lattice – acoustical mode and optical mode energy gap. Comparison with theory. To draw forward and reversed bias characteristics of a semiconductor diode. Zener Diode voltage regulation characteristics. To determine the value of e/m by Thomson's method To determine band gap using van der Paw technique To determine the value of e/m by helical method 						
Note: The list of the experiment given above should be considered as suggestive of the standard and available equipment. The faculty members are authorised to add or delete from this list whenever considered necessary.						
12. Book Re	commended:					
 Harnam R. A. D 978-0195049 	 Harnam Singh and P S Hemne, Practical Physics, S Chand, ISBN: 9788121904698 R. A. Dunlup. Experimental Physics: Modern Methods. New Delhi: Oxford University Press, 978-0195049497 					

1. Name of th	ne Department: Physi	cs				
2. Course Name	Condensed Matter Physics: Physical Properties	L	T		Р	
3. Course Code	17080311	3	0		0	
4. Type of Co mark)	ourse (use tick	Core ()	DSE (V)	SEC ()	
5. Pre- requisite (if any)		6. Frequency (use tick marks)	Even ()	$\begin{array}{c} \text{Odd} \\ (\sqrt{)} \end{array}$	Either Sem ()	Every Sem ()
7. Total Num	ber of Lectures, Tute	orials, Practical	1		1	
Lectures = 40		Tutorials = 0	Pra	ctical =	= 0	
8. Course De	scription:					
This course intends	s to provide knowledge	e about the Physical prop	perties of	solids.		

9. Course Objectives:

- 1. This course gives an insight about conceptual condensed matter physics.
- 2. This course delivers a general outline to theoretical concepts in condensed matter physics.
- 3. This course provides an introduction to the experimental topics in condensed matter physics.
- 4. This course aims to set a correlation between the academic and investigational studies.

10. Course Outcomes (COs):

1. The students will be able to find out about dielectric and ferroelectric materials

2. The student will come to know about the optical properties of solids which play an important role in crystal structure determination

3.Student will know the magnetic parameters and will be able to find potential materials for magnetic applications

4.Hall effect knowledge will make the students to recognize the p- or n-type semiconductors

11. Unit wise detailed content

Unit-1	Number of	Title of the unit: Dielectric Properties of Solids
	lectures = 8	

: Dielectrics and ferroelectrics, macroscopic electric field, local field at an atom, dielectric constant and polarizability, ferroelectricity, antiferroelectricity, piezoelectric crystals, ferroelasticity, electrostriction.

Unit - 2	Number of	Title of the unit: Optical properties
	lectures = 8	

Optical constants and their physical significance, Reflectivity in metals, plasmonic properties of metals, determination of band gap in semiconductors: direct and indirect band gap, defect mediated optical transitions, excitons, photoluminescence, Electroluminescence.

Unit - 3	Number of	Title of the unit: Magnetism
	lectures = 10	

Types of magnetic materials, Quantum theory of paramagnetism, Hund's rule, Ferromagnetism, antiferromagnetism: molecular field, Curie temperature. Domain theory, Magnetic Anisotropy, Magnetic interactions, Heitler-London method, exchange and super exchange, magnetic moments and crystalfield effects, spin-wave excitations and thermodynamics, anti-ferromagnetism, Magnetostriction.

Unit - 4	Number of	Title of the unit: Transport Properties of Solids and
	lectures = 14	Superconductors

Boltzmann transport equation, resistivity of metals and semiconductors, Fermi surfaces – determination, Landau levels, de Hass van Alphen effect, Quantum Hall effect- Integral quantum Hall effect and magnetoresistance.

Phenomenology, review of basic properties, thermodynamics of superconductors, London's equation and Meissner effect, Type-I and Type-II superconductors, BCS theory of superconductors.

12. Brief Description of self-learning / E-learning component

https://nptel.ac.in/courses/115/105/115105099/ https://www.youtube.com/watch?v=RImqF8z91fU https://www.youtube.com/playlist?list=PL64fZsc8IYkVkb4Uf0esPJ5GUq6g0Og9s

13. Books Recommended

1. Introduction to Solid State Physics, Charles Kittel, John Wiley and Sons, ISBN: 978-8126535187

2. Solid State Physics, Neil W. Ashcroft and N. David Mermin, Holt, Rinehart and Winston, ISBN: 978-0030839931

3. Applied Solid State Physics, Rajnikant, Wiley India, ISBN: 9788126522835

4. Solid State Physics, S O Pillai, New Age International Publishers, ISBN: 978-9386070920

5. Elements of Solid State Physics, J P Srivastava, PHI Learning Private Limited, 9789386070920

1. Name of the Department: Physics							
2. Cou Name	rse	Condensed Matter Physics: Physical Properties Lab	L	T		Р	
3. Code	Course	17080312	0	0		4	
4.	Type of C	ourse (use tick mark)	Core ()	DSF	E (√)	SEC ()	
5. requisit (if	Pre- te any)		6. Frequency (use tick marks)	Ever ()	n Odd $()$	Either Sem ()	Every Sem ()
7. Total Number of Lectures, Tutorials, Practical							
Lecture	es = 0		Tutorials = 0		Practical =	= 52	

8. Course Description:

In this course students will gain practical knowledge about optical, dielectric and magnetic properties of the materials.

9. Course Objectives:

1. The major objective of this course is to make students understand the basic concepts of condensed matter physics through standard set of experiments.

2. While performing these experiments students must correlate them with the corresponding theory

3. To make students practise thinking and to have hands on experience of the equipment

4. To make student acquire, process, analyse and interpret the data

10. Course Outcomes (COs):

After successful completion of the course, students will be able to

1. calculate various optical parameters

- 2. calculate the dielectric properties
- 3. apply different experimental techniques to calculate scientific parameters

4. associate the theoretical concepts with the experiments

11. List of Experiments

- 1. To determine the variation of refractive index of the material of prism and to verify Cauchy's dispersion formula.
- 2. To study the UV/vis spectrum of given sample.
- 3. To find the dielectric constant of liquids
- 4. To study Curie temperature of magnetic materials.
- 5. Dielectric constant and Curie temperature of ferroelectric ceramics.
- 6. To Study Hysteresis (B-H curve).
- 7. Two probe method for resistivity measurement.
- 8. To study conductivity of thin film by four probe method.
- 9. To find the magnetoresistance of semiconducting material
- 10. To study determine the change in length of the sample when placed in magnetic field.

Note: The list of the experiment given above should be considered as suggestive of the standard and available equipment. The faculty members are authorised to add or delete from this list whenever considered necessary.

12. Book Recommended:

1. Harnam Singh and P S Hemne, Practical Physics, S Chand, ISBN: 9788121904698

2. R. A. Dunlup. Experimental Physics: Modern Methods. New Delhi: Oxford University Press, 978-0195049497

1.	1. Name of the Department: Physics							
2. Cou	urse Name	Advanced Condensed Matter Physics	L		Τ		Р	
3. Code	Course	17080313	3		0		0	
4. mark)	Type of Co	ourse (use tick	Core	0	DSE (*	√)	SEC ()	
5. requisi	Pre- ite		6.	Frequency	Even ()	$\begin{array}{c} \text{Odd} \\ (\sqrt{)} \end{array}$	Either Sem ()	Every Sem ()

(10)	T			1		1
(if any)		(use tick marks)				
7. Total Num	ber of Lectures, Tuto	orials, Practical			•	
Lectures = 40		Tutorials = 0	Pra	ctical =	: 0	
8. Course Des	scription:					
This course intends	to provide knowledge	about the advanced conc	epts in c	condense	ed matter j	physics
9. Course Ob	jectives:					
1. This course inten	ds to provide knowled	ge of emerging topics in	condens	ed matte	er physics.	
2. In addition, this c	course aims to provide	introduction to theoretica	al aspect	s of adv	anced topi	ics.
3 This course aims	to provide an introduc	tion to the experimental t	topics in	conden	sed matter	r physics
4. This course aims				conden	ised matter	physics.
4. This course aims	at inculcating concept	tual know how in students	8			
10. Course Ou	tcomes (COs):					
1. The students will 2. Student will get be applications in diffe	have information about asic knowledge about p rent spheres.	t the carbon-based materi properties of different ma	ials terials v	which ha	we a wide	range of
4. The students will	be exposed to different	t characterization techniq	ues used	1 in expe	erimental	101.
condensed matter pl	hysics.			F		
11. Unit wise detailed content						
Unit-1	Number of	Title of the unit: Glass	es and	Polym	ers	
	lectures = 10			J		
Glass formation, ty semiconductors, ele edges, Density of s properties of amo characterization tech	pes of glasses and g ectronic structure of a tates and their determ orphous semiconductor hniques, optical, electr	lass transition, radial dis amorphous solids, locali- ination, transport in exte- ors. Structure of polyn ical, thermal and dielectri	tribution zed and ended an ners, po ic prope	n functi extend nd local olymeriz rties of j	on and ar ed states, ized states zation me polymers.	norphous mobility s, Optical echanism,

Unit - 2	Number of	Title of the unit: Liquid crystals		
	lectures = 8			

Liquid Crystals. Structural peculiarities and applications, Thermotropic liquid crystals; Classification, Phases and phase transitions; anisotropic materials; symmetry aspects; optics; electro-optics of liquid crystals; ferro-, and antiferroelectric liquid crystals; examples of LCs in nanoscience, photonics and microwave electronics, display devices.

Unit - 3	Number of	Title of the unit: Carbon based materials and Phase
	lectures = 14	transitions in solids

Fullerenes, C60, C80 and C240 Nanostructures; Properties and Applications (mechanical, optical and electrical). CNT-single walled and multiwalled, graphene.

Landau's theory, first order and second order transition, order parameter and critical exponents, examples of phase transition: Solid-liquid, ferroelectric – paraelectric, ferromagnetic – paramagnetic, superconducting transition, liquid crystals.

Unit - 4	N I	Number of ectures = 8]	Title of the unit: Introduction to Surface Physics				
Reconstruction	and	relaxation.	surface	electronic	structure:	Hetrostructures:	Self-assembled	

monolayers, Electrified interfaces, Charge transfer at the liquid-solid interfaces. Thin film deposition methods: thermal evaporation and sputtering.

12. Brief Description of self learning / E-learning component

https://nptel.ac.in/courses/118/104/118104008/ https://nptel.ac.in/courses/113/106/113106093/ https://nptel.ac.in/courses/113/107/113107081/ https://nptel.ac.in/courses/118/102/118102003/

13. Books Recommended

1. Physics of Amorphous Solids, R. Zallen (John Wiley and sons, 1983), ISBN: 978-0471299417

2. Introduction to Polymer Physics, Ulrich Eisele and Stephen D. Pask (Springer-Verlag, 2011), ISBN: 978-3642744365

3. The physics of liquid crystals, Pierre-Gilles de Gennes (2nd Ed., Oxford University Press, 2003), ISBN: 9780198520047

4. Introduction to Liquid Crystals, Peter J. Wojtowicz, E. Priestly, Ping Sheng (Plenum press, 1975), ISBN: 9780306308581

5. The Physics of Phase Transitions - Concepts and Applications, P. Papon, J. Leblond, and Paul H. E. Meijer (2nd Ed., Springer-Verlag, 2006), ISBN: 978-3-540-33390-6

1.	Name of the Department: Physics				
2.	Course Name	Advanced Condensed Matter Physics Lab	L	Τ	Р
3.	Course Code	17080314	0	0	4
4.	Type of Course (use	e tick mark)	Core ()	DSE $()$	SEC ()

5. Pre-requisite (if any)		6. Frequency (use tick marks)	E	Even ()	Odd $()$	Either Sem ()	Every Sem ()
7. Total Number of L	ectures, Tutorials, P	ractical					
Lectures = 0		Tutorials = 0		Practic	al = 52		
8. Course Description	l :						
In this course students physics	will gain practical	knowledge advanced ex	xpe	eriments	related to	condense	d matter
9. Course Objectives:							
1. The major objective of physics through standard	of this course is to m l set of experiments.	ake students understand	th	e basic o	concepts of	f condense	ed matter
2. While performing thes	se experiments studen	ts must correlate them w	/ith	the corr	esponding	theory	
3. To make students prac	tise thinking and to h	ave hands on experience	e of	the equi	pment		
4. To make student acqu	ire, process, analyse a	ind interpret the data					
10. Course Outcomes (COs):						
After successful comple	etion of the course, st	tudents will be able to					
1. Distinguish between the	he crystal structures						
2. Calculate various latti	ce parameters						
3. Understand the therma	al phenomena in mate	rials					
4. associate the theoretic	al concepts with the e	xperiments					
11. List of Experiments	S						
1. To measure the	Curie Temperature of	a given ferroelectric mat	teri	ial.			
2. Structural charac	cterization of nanoma	terials by XRD- determin	nati	ion of av	erage		
grain size, lattice parame	eters, strains etc.	has DCC/DTA (a shari and					
5. Thermal charact	erization of polymers	by DSC/DTA technique					
5 Thermal charact	erization of Glasses h	v DSC/DTA technique					
6. Synthesis of nan	oparticles.	y DSC/D III teeninque.					
7. To study the pho	otodiode characteristic	cs.					
8. To find the cryst	al structure of the nar	nomaterials					
9. Generate a Bra	vais lattice in Matla	b					
10. Generate and v	isualize Wigner Sei	tz primitive cell in Mat	tla	b			
11. Plot cubic lattic	11. Plot cubic lattice and a plane with the Miller indices (1, 1, 1).						
Note: The list of the experiment given above should be considered as suggestive of the standard and available equipment. The faculty members are authorised to add or delete from this list whenever considered necessary.							
12. Book Recommende	2 d:						
1. Nanoscale Chara VCH, 2000) ISB	acterization of Surface 3N: 9783527292479.	es & Interfaces, N John	Di	nardo, (V	Weinheim (Cambridge	e: Wiley-
2. Vyazovkin, Serg and Calorimetry	gey & Koga, Nobuyos , v.6, Recent Advance	hi & Schick, Christoph. es, Techniques and Appli	(20 icat)18). Hai tions., IS	ndbook of 7 BN: 978-0	Thermal A -444-6406	malysis 52-8

Nuclear Physics

1. Name of the Department: Physics

2. Course	Nuclear Physics	L			Т]	Р
Name							
3. Course	17080315	3	0		0		
Code							
4. Type of Course (use tick		Core ()	$DSE(\sqrt{)}$		ASE()		
mark)							
5. Pre-		6. Frequency	Eve	n	Odd $()$	Either	Every
requisite		(use tick	0			Sem ()	Sem ()
(if any)		marks)					
7. Total Numb	er of Lectures, Tut	orials, Practical					
Lectures = 40		Tutorials = 0		Pra	actical = 0		

8. Brief Syllabus

The syllabus is divided into four units i.e. Nuclear Properties, Nuclear Forces, Radioactive decays and Elementary Particles.

9. Course objectives:

The course develops an understanding of theoretical and experimental approaches for nuclear Properties, forces between nucleons via two nucleon problem. Also this course provide a hand on Radioactive decay and Physics of elementary Particles.

10. Course Outcomes (COs):

After the successful completion of the course, students will be able to

- 1. Explain the concepts of Nuclear properties, forces, Radioactive decays and elementary particles in detail.
- 2. Understand approaches used in research in the field of Experimental and theoretical Nuclear Physics.
- 3. Use their knowledge in Analytical/Scientific Reasoning in the area of Nuclear Physics.
- 4. Apply their knowledge in solving problems.

11. Unit wise detailed content				
Unit-1	Number of	Title of the unit: Nuclear Properties		
	lectures = 10			

Nuclear mass, nuclear radii measurements – scattering and electromagnetic method, Nuclear electric and magnetic moments, Quantum properties of nuclear states, Binding energies, semi empirical mass formula. Liquid drop model, Outlines of Bohr and Wheeler theory.

Unit - 2	Number of	Title of the unit: Nuclear Forces			
	lectures = 10				
Nuclear Forces, Two-nucleon interaction potential, the Deuteron Problem, Ground and					
excited states of	excited states of Deuteron, Neutron-proton (n-p) scattering at low energies, Effective range				
theory in n-p s	cattering. Coheren	nt and incoherent scattering, tensor forces and the deuteron			
Problem, proton-proton (p-p) scattering at low energy. Comparison between n-p and p-p					
scattering.					
Unit - 3	Number of	Title of the unit: Radio Active Decays			
		•			

lectures $= 10$	
Alpha Decay and its Kinematics,	Range, Geiger-Nuttal law, Gamow's theory of alpha decay.
Beta decays, Energy relations, F	ermi theory of beta decay, Beta transitions, selection rules,
Parity violation, Wu-Ambler expe	eriment, helicity of electron and neutrino.
Gamma Decay, Electric and mag	gnetic multipole gamma transitions, selection rules, Internal

Gamma Decay, Electric and magnetic multipole gamma transitions, selection rules, Internal Conversion process, Transition rates, directional correlation in gamma emission.

Unit - 4	Number of	Title of the unit: Elementary Particles (10)

lectures = 10
Fundamental Forces, Elementary particles and their quantum numbers (charge, spin, parity,
isospin, strangeness, etc.), symmetries and conservation laws. Gellmann-Nishijima formula.
Quark model, baryons and mesons. C, P and T invariance. Application of symmetry
arguments to particle reactions. Parity non-conservation in weak interaction. Relativistic
kinematics.
12. Brief Description of self- learning / E-learning component.
To understand basic concepts in detail, students may get study materials on these links.
1. <u>https://onlinecourses.nptel.ac.in/noc18_ph02_</u>
2. <u>https://www.mooc-list.com/tags/nuclear-physics</u>
3. <u>www.nuclearonline.org/Courses.htm</u>
4. <u>https://study.com/directory/category/Physical_Sciences/Physics/Nuclear_Physics.html</u>
5. <u>https://www.class-central.com/tag/nuclear%20physics</u>
13. Books Recommended
1. R. R. Roy and B. P. Nigam, "Nuclear Physics: Theory and Experiment", New Age
International Pvt Ltd (1 January 2014). ISBN-978-8122434101
2. D.C. Tayal, "Nuclear Physics", Himalaya Publishing House, 2009 ISBN-13: 978-9350247433
3. W. E. Burcham, "Nuclear Physics : An Introduction", Longman Group Limited, London,
1973. ISBN-978-0582441101
4. R. G. Sachs, "Nuclear Theory", Addison-Wesley Publishing Company, Cambridge, 1955.
ISBN-978-0201067002 K. S. Krong, "Introductory Nuclear Division" Wiley, India Dyt. Ltd. 2008 ISDN 078
5. K. S. Krane, Introductory Nuclear Physics, whey India Pvt. Ltd., 2008 ISBN-978- 8126517855
8120317833
6. Introduction to High Energy Physics : D.H. Perkins (Cambridge University Press), 4th ed. 2000. ISBN- 978-0511809040
7. Introduction to Particle Physics : M.P. Khanna (Prentice Hall of India, New Delhi), 2004.
ISBN-978-8120312685

1. Name of the D	epartment: Physi	ics					
2. Course	Nuclear	L	Т		Р		
Name	Physics Lab						
3. Course Code	17080316	0	0		4		
4. Type of Course (use tick		Core ()	DSE	E AEC	SEC ()	OE ()	
mark)			(√)	0			
Pre-requisite		Frequency (use	Even	n Odd	Either	Every	
(if any)		tick marks)	0	(√)	Sem ()	Sem ()	
7. Total Number of Lectures, Tutorials, Practical							
Lectures =		Tutorials =		Hours = 52			
8. Course Descri	ption:						

In this course student will hand on the experiments using weak radioactive sources, G.M. counters, Scintillation Counters, MCA, SCA, DAC and CRO.

9. Course Objectives:

The course aims to provide students with a practical knowledge of the particles identification, basic electronics behind nuclear techniques and radiation and Particle detectors.

10. Course Outcomes (COs):

After the successful completion of the course, students will be able to

- 1. Understand and describe the particle Identification.
- 2. Understand and demonstrate the experimental knowledge in laboratory.
- 3. Analyse scientific data available from the experiments and explain.
- 4. Improve their research related skills.

11. List of Experiments

- 1. To study the variations of count rate with applied voltage and thereby determine the plateau, the operating voltage and the slope of Plateau.
- 2. Measurement of dead time.
- 3. To investigate the statistics related to measurements with a Geiger counter Poisson Distribution
- 4. To investigate the statistics related to measurements with a Geiger counter- Gaussian Distribution
- 5. To find the absorption coefficient of given material using G.M. counter and deduce end-point energy of a beta emitter.
- 6. To study the absorption of Beta particles in different materials.
- 7. Source strength of a Beta Source.
- 8. To study the Back scattering of Beta particles.
- 9. To study Production and attenuation of Bremstrhlung.
- 10. Measurement of Short Half life.

Note: The list of the experiment given above should be considered as suggestive of the standard and available equipment. The faculty members are authorised to add or delete from this list whenever considered necessary.

12. Books Recommended:

- 1. Techniques in Nuclear and particle Experiments by W.R. Leo (Springer), 1994. ISBN-978-3540572800
- 2. Radiation detection and measurement by Glenn F. Knoll (Wiley), 2010. ISBN: 978-0-470-13148-0
- 3. Introduction to Experimental Particle Physics by Richard Fernow (Cambridge University Press), 2001. ISBN-978-0511622588

1. Name of the Department: Physics							
2. Course	Experimental	L	Т		I)	
Name	techniques in Nuclear						
	Physics						
3. Course	17080319	3	0		0 0		
Code							
4. Type of Cou	rse (use tick mark)	Core ()	DSE(√))	ASE()		
Pre-		Frequency (use	Even	Odd	Either	Every	
requisite		tick marks)	0	(√)	Sem ()	Sem ()	

(if any)						
7. Total Number	er of Lectures, Tutorials,	Practical				
Lectures = 40	,	Tutorials = 0				
8. Brief Syllabu	15:	I				
The course is	divided into four units i.	e. Data interpretation	n and ar	nalysis,	radiation a	nd particle
detectors, electr	onics associated with dete	ctors and particle acc	elerators	and faci	lities in Ind	ia.
9. Course Obje	ctives:					
The aim and o research in the f	bjective of the course is field of Nuclear Physics. I	to make a ground in this course students	for stude s are give	ents to v en expos	work in exponent in exponent of the second s	perimental retical and
10. Course Out	comes (COs):	int and methods used	in the ex	permen		
After the succes	sful completion of the cou	rse_students will be a	able to			
1. Underst	and and explain various ex	xperimental technique	es used ir	n Nuclea	r Physics re	esearch.
2. Use the	knowledge of detectors an	nd associated electron	ics.		·	
3. Underst	and the developments and	challenges in detecti	on system	ns and p	article acce	lerators.
4. Underst	and the Analytical and Sci he particle accelerators and	entific Reasoning in	area of ex	xperime	ntal Nuclea	r Physics.
5. Kilow ti			n muia.			
11. Unit wise d	etailed content					
Unit-1	Number of lectures =	Title of the unit: D	ata Inte	rpretati	on and ana	llysis
squares fitting Gaussian dist Interaction of Relativistic par Unit - 2	of linear and nonline ributions, Lorentzian gamma-rays, neutrons rticle interaction. Number of lectures = 10	ar functions, chi s distributions. Rev , electrons and he Title of the unit: R	quare te iew on eavy cha adiation	est, Bir Detec arged a n and I	nomial, Po tion of r articles wi Particle de	isson and cadiations: th matter, tectors
time. Statistic counters, G.M. chambers, Drif Organic and i gamma ray spe Semiconductor Compton-supp	Intes of Radiation detects and treatment of e L. Counter, position-set ft chamber, Time project inorganic scintillators a ectrum from detector, Cl r detectors in X- and ga pressed Ge detectors.	xperimental data. nsitive proportiona- tion chamber. and their character nerenkov detector. mma-ray spectrosco Semiconductor	Gas-fill counte istics, d opy, Ge	ed det ers, Mu lescripti , Si(Li) ors for	ettors: Pr iltiwire pr ion of ele and SDD charged	oportional oportional ctron and detectors,
spectroscopy a detector shield	and particle identificati	on, Silicon strip d	etectors	, Gener	ral Backgi	ound and
Unit - 3	Number of lectures = 10	Title of the unit: E detectors	lectroni	ics asso	ciated wit	h
Electronic shi recovery. Elec configurations cancellation, matching, sing	elding and grounding, tronics for pulse signal), Linear amplifiers, baseline shift and res le-channel and multicha	Measurement and processing, preamp CR-(RC) _n and de- toration, overload nnel analysers	control lifiers (v lay-line recover	l, Sign voltage pulse ry and	al condition and charge shaping, pileup, I	oning and e-sensitive pole-zero mpedance
	10	in India	article A	Acceler	ators and	iacilities

Van-de Graff generator, Cyclotron, Linear accelerator, Pelletron, Synchrotron, production of radioactive ion beams. Detector systems for heavy-ion reactions: Large gamma and charge particle detector arrays, multiplicity filters, electron spectrometer, heavy-ion reaction analyzers, nuclear lifetime measurements (DSAM and RDM techniques).

12. Brief Description of self-learning / E-learning component:

- 1. To understand basic concepts in detail, students may get study materials on following links.
- 2. https://onlinecourses.nptel.ac.in/noc18_ph02
- 3. https://www.mooc-list.com/tags/nuclear-physics
- 4. www.nuclearonline.org/Courses.htm
- 5. https://study.com/directory/category/Physical_Sciences/Physics/Nuclear_Physics.html
- 6. https://www.class-central.com/tag/nuclear%20physics_

13. Books Recommended

- 1. Techniques in Nuclear and particle Experiments by W.R. Leo (Springer), 1994. ISBN-978-3540572800
- 2. Radiation detection and measurement by Glenn F. Knoll (Wiley), 2010. ISBN: 978-0-470-13148-0
- 3. Introduction to Experimental Particle Physics by Richard Fernow (Cambridge University Press), 2001. ISBN-978-0511622588
- 4. Detectors for particle radiation by Konrad Kleinknecht(Cambridge University Press), 1999. ISBN: 9780521648547

1. Name of the Department: Physics						
2. Course Name	Experimental techniques in Nuclear Physics Lab	L	Т		Р	
3. Course Code	17080320	0	0		4	
4. Type of Cou	irse (use tick mark)	Core ()	DSE $()$	AEC ()	SEC ()	OE ()

Pre- requisite		Frequency (use tick	Even ()	$\begin{array}{c} \text{Odd} \\ (\sqrt{)} \end{array}$	Either Sem ()	Every Sem ()
(if any)		marks)				
7. Total Numb	er of Lectures, Tutorials, P	ractical Tutorials –	Dr	entical -	- 52	
8 Course Des	printion:	Tutoriais –		actical -	- 52	
In this course st	udent will hand on the experi	iments using weak	radioact	ive sour	ces GM c	ounters
Scintillation Co	unters, MCA, SCA, DAC an	d CRO.	ruurouet			ounters,
9. Course Ob	ectives:					
The course aim	s to provide students with a	practical knowled	lge of the	e particle	s identifica	tion, basic
electronics behi	nd nuclear techniques and ra-	diation and Partic	le detecto	ors.		
10. Course Ou	tcomes (COs):					
After the succes	ssful completion of the course	e, students will be				
able to	tand and describe the narticle	Idantification				
2 Unders	tand and demonstrate the exp	erimental knowle	doe in lał	oratory		
3. Analys	e scientific data available from	m the experiments	and expl	lain.		
4. Improv	e their research related skills.					
11. List of Exr	eriments					
1. To dete	rmine the plateau, and find th	ne operating voltag	ge of GM	l tube		
2 Calibra	tion of Scintillation Spectron	neter	-			
3. Pulse-H	leight Analysis of Gamma Ra	av Spectra.				
4. To trac	e the signal of particle detection	ion in a scintillator	r using C	RO.		
5. Least se	quare fitting of a straight line		C			
6. To dete	rmine the range of Alpha-par	rticles in air at diff	erent pre	ssures ar	nd energy lo	oss in thin
foils.	·····	-1	1.	1	1	
7. To dete	finitine strength of alpha partic	cies using Sond st	ate nucle	ar track (selector (53	SNID).
9. To study	v p-p interaction and find the	e cross-section of a	a reaction	using a	bubble cha	mber.
10. To stud	y n-p interaction and find the	e cross-section usi	ng a bubł	ole cham	ber.	
Note: 7	The list of the experiment g	given above shou	ild be co	nsidered	1 as sugger	stive of
the star	ndard and available equipm	nent. The faculty	member	rs are au	thorised to	o add or
delete f	from this list whenever con	sidered necessar	у.			
12. Books Rec	ommended:					
1. Technic 354057	ues in Nuclear and particle F 2800	Experiments by W	.R. Leo (Springer), 1994. IS	BN-978-
2. Radiati 13148-	on detection and measuremer 0	nt by Glenn F. Kno	oll (Wiley	y), 2010.	ISBN: 978	5-0-470-
3. Introdu Press),	ction to Experimental Particle 2001. ISBN-978-051162258	e Physics by Rich 8	ard Ferno	ow (Cam	bridge Univ	versity

1. Name of the Department: Physics							
2. Course	Advanced Nuclear	L	Т	Р			
Name	Physics: Structure and						
	Reactions						
3. Course	17080317	3	0	0			
Code							

4. Type of Course (use tick mark)Core () $DSE(\sqrt{)}$ $ASE()$						
Pre-		Frequency (use	Even	Odd	Either	Every
requisite		tick marks)	0	(√)	Sem ()	Sem ()
(if any)						
7. Total Number	er of Lectures, Tutorials,	, Practical	r			
Lectures $= 40$		Tutorials = 0				
8. Brief Syllabi	18:					
The course is d Structure, nucle	ivided into four units i.e. ar reactions.	Nuclear shell mode	l, collect	ive mod	lel, Advanc	ed Nuclear
9.Course objec	tives:					
The course aims The course exp	s to provide students an u lains the development of experimental data	nderstanding of adva f nuclear structure an	ncements	s in Nuc ar reacti	lear Physic ions using	s research. theoretical
10. Course Out	comes (COs):					
After the succes	sful completion of the con	urse student will be a	ble to			
	a amarana han aiwalay ah awa ah					
1. Explain	comprehensively about tr	le various nuclear mo	dels and	nuclear	reactions.	
2. Underst Physics	and experimental and the	oretical approaches u	ised in re	esearch	in the field	of Nuclear
3. Use the	ir knowledge in Analytica	l/Scientific Reasoning	g in the a	rea of N	uclear Phys	sics.
4. Underst	and the present scenario in	n the field of Nuclear	Physics.		·	
11. Unit wise d	etailed content					
Unit-1	Number of lectures = 10	Title of the unit: N	uclear S	hell Mo	del	
Evidence for n	uclear shell structure, E	Extreme single parti	icle mod	lel, She	ll model p	redictions.
Single-particle	model, nuclear ison	merism, Magnetic	mome	nt-Schr	nidt lines	, electric
quadrupole mo	oment, Configuration mi	ixing, Independent	particle 1	model,	L-S coupli	ng and J-J
coupling.						
Unit - 2	Number of lectures = 12	Title of the unit: C	Collectiv	e Mode	el.	
Rotation-D ma scalar vibration collective Hann nuclei and od spectrum with	atrices and properties, ons, Giant resonance, F niltonian, Deformed rot d-A nuclei, Electric qu coupling of vibration ar	Collective modes Parameterization of ational nuclei, rota uadrupole moment, nd rotational motion	of motion nuclear tional er magner	on, nuc surfac hergy sj tic dipo	lear vibrat e, Derivati pectra for ble momer	tions, iso- ion of the even-even nt, Energy
Unit - 3	Number of lectures = 8	Title of the unit: A	dvanced	Nuclea	r Structur	е
Harmonic ani	sotropic oscillator, Nil	sson model, Rotat	tional n	notion	at very h	igh spins,
Cranking she	ll model, Kinematics	and dynamic n	noment	of ine	ertia, Bac	k-bending
phenomenon.						
Brief review -	Nuclear Physics at extre	emes of stability.				
Unit - 4	Number of lectures = 10	Title of the unit: N	uclear R	leaction		
Nuclear React Continuum the nuclear reacti Kinematics of	ion Cross sections, Bre eory of cross section, St ons at low energies, stripping and pick-up re	it-Wigner dispersion atistical theory of N comparison with eactions, theory of s	on formu Nuclear experin tripping	ila, the Reactio nents. and pic	Compound n. Optical Direct Re k-up react	d nucleus, model for eactions - ions.
		54				

11. Brief Description of self-learning / E-learning component:

To understand basic concepts in detail, students may get study materials on following links.

- 1. https://onlinecourses.nptel.ac.in/noc18_ph02
- 2. https://www.mooc-list.com/tags/nuclear-physics
- 3. www.nuclearonline.org/Courses.htm
- 4. https://study.com/directory/category/Physical_Sciences/Physics/Nuclear_Physics.html
- 5. https://www.class-central.com/tag/nuclear%20physics_

13. Books Recommended

- 1. R. R. Roy and B. P. Nigam, "Nuclear Physics: Theory and Experiment", New Age International Pvt Ltd (1 January 2014). ISBN-978-8122434101.
- 2. M. K. Pal, "Theory of Nuclear Structure", Affiliated East-West Press, New Delhi. ISBN-978-8185336817.
- 3. Basic Ideas and Concepts in Nuclear Physics: K. Heyde, (Overseas Press India) (2005). ISBN-978-0750309806.

4. Elementary theory of Angular momentum: M.E. Rose (Dover edition) (1995). ISBN-978-0486684802.

5. Nuclear Physics: Experimental and Theoretical: H. S. Hans, New Age International Pvt Ltd (1 January 2019) ISBN-978-8122431414

1. Name of the Department: Physics						
2. Course	Advanced Nuclear	L	Т	Р		
Name	Physics Laboratory					
3. Course	17080318	0	0	4		

Code							
4. Type of	f Cou	rse (use tick mark)	Core ()	DSE $(\sqrt{)}$	AEC ()	SEC ()	OE ()
Pre-			Frequency (use	Even	Odd	Either	Every
requisite			tick marks)	0	(√)	Sem ()	Sem ()
(if any)							
7. Total N	umbe	er of Lectures, Tutor	Tratorial	D-		50	
<u> Course</u>	=		Tutoriais =		ractical =	52	
In this course Scintillation	irse stu on Cou	ident will hand on the inters, MCA, SCA, D	experiments using weater AC and CRO.	ak radioa	ctive sour	rces, G.M. o	counters,
9. Course	Obje	ectives:		1 0			
The course electronics	e aims s behir	to provide students ad nuclear techniques	with a practical knowle and Radiation and part	edge of t icle detec	he particl	es identific	ation, basic
10. Cours	se Out	comes (COs):					
1. Un 2. Un 3. An 4. Im 11. List of 1. To 2. W 3. To 4. To 5. To 6. To 7. To 8. To 9. To 10. To No the de	ndersta ndersta nalyse prove f Expo f Expo f ind find w o find findow o distin o estim o study o deter o study o deter o calib ote: T e stan lete fr	and and describe the p and and demonstrate to scientific data available their research related eriments the operating voltage thickness of a G.M. In aguish between beta a mate the efficiency for ate the efficiency for ate the efficiency for y the inverse square L mine the range of bet y the alpha spectrum f mine the gamma-ray rate the given gamma he list of the experi- dard and available e- rom this list wheney	oarticle Identification. the experimental knowl ble from the experimental skills. of GM Tube Tube. Ind gamma radiation us a gamma Source. Beta Source. Beta Source. aw. a particle and maximum from natural sources The absorption coefficient for the spectrometer and of ment given above showed equipment. The facult for considered necess	ing GM ' n energy and U. for differd determine buld be c y memb ary.	aboratory plain. Tube using Ha ent eleme e its energ considere ers are a	If thickness nts. gy resolutio ed as sugge uthorised t	method. n. ostive of o add or
12. Books 1. Te	s Reco echniq	mmended: ues in Nuclear and pa	rticle Experiments by V	W.R. Leo	(Springe	r), 1994. IS	BN-978-
35 2 Pc	540572 adiatio	2800	urement by Glenn F. K	noll (Wil	ev) 2010	ISBN: 07	8-0-470-
2. Ka 13	3148-0		urement by Ofenni F. K	1011 (11	<i>cy)</i> , 2010	, ISDIN, 77	0-0-4/0-

Semester-IV

Students either have to complete a project work of six months (in-house/ at an industrial / scientific organization) or they may opt the four courses to be completed out of the below given list except their specialized subject:

1.	1. Name of the Department: Physics							
2.	Course Name	Electronics	L	Γ			Р	
3.	Course Code	17080402	4	0			0	
4. Type of Course (use tick mark)		Core ()	Γ	DSE $()$		SEC ()		
5.	Pre-requisite	Physics at	6. Frequency	E	Even	Odd ()	Either	Every
	(if any)	graduation level	(use tick	(√)		Sem ()	Sem
			marks)					0
7.	7. Total Number of Lectures, Tutorials, Practical							
Le	Lectures = 52 Tutorials = 0 Practical = 0							
8.	8. Course Description:							

The course is intended to provide an understanding of the semiconductor devices used in the current semiconductor industry. It caters to undergraduate and graduate students with a diverse background in Materials Science, and Physics. The course provides the students with the basic physics behind semiconductor materials, types of semiconductors, and the reason for the dominance of silicon in the electronics industry. The course also covers the basics of devices with emphasis on their electronic characteristics. Optical devices like LEDs, lasers, solar cells, and their properties will also be explained.

9. Course Objectives:

- 1. To study the basics of electronic components
- 2. To study the basic concept and characteristics of electronic devices and circuits.
- 3. To observe the characteristics of optical devices like LED, lasers and Solar cells
- 4. To get familiar with the different number systems and logic gates
- 5. To study the basics of microprocessor

10. Course Outcomes (Cos):

After successful completion of the course, students will be able to

1. Apply the concept of semiconductor physics.

- 2. Apply the concepts of basic electronic devices to design various electronic circuits.
- 3. Understand operation of diodes, transistors in order to design basic and advanced circuits.
- 4. Analyze electronic circuits designed using operational amplifiers (Op-Amp).
- 5. Understand the working principle and uses of microprocessors.

11. Unit wise detailed content

Unit-1 Number of lect	tures = 14 Title of the unit	: Basic Semiconductor Devices
-----------------------	------------------------------	-------------------------------

P-N junction diode, Capacitance of p-n junctions, switching diodes, Clippers & Clampers, Photoconductors, photodiode, light emitting diodes and liquid crystal display, Junction Field Effect Transistor (JFET) : Basic structure & Operation, pinch off voltage, Single ended geometry of JFET, Volt Ampere characteristic, Transfer Characteristics, JFET as Switch and Amplifier. MOSFET: Enhancement MOSFET, Threshold Voltage, Depletion MOSFET, comparison of p & n Channel FET, SCR, 4-layer pnpn devices, Tunnel diode

Unit – 2	Number of lectures = 14	Title of the unit: Digital Electronics
-----------------	-------------------------	--

Various Number system and their arithmetic: binary number system, 2's compliment, Octal number system, hexadecimal number system, BCD codes, Excess-3 codes, Gray codes, Octal codes, Hexadecimal codes and ASCII codes: Digital (binary) operation of a system, Logic system, the OR gate, the AND gate, the NOT gate, the exclusive OR gate, De Morgan's laws, the NAND and NOR diode- transistor gates, transistor-transistor logic (TTL) gates output stages, Digital MOSFET circuits, complementary MOS (CMOS) logic gates, Boolean Algebra, comparison of logic families, Karnaugh-map (K-map) up to four variables and its applications.

Unit – 3 Number of lectures = 12 Title of the unit: Operational Amplifier

Differential Amplifier, Inverting & non-inverting Amplifiers, Negative and Positive Feedback. Band width,Voltage follower. CMRR, DC, AC, Summing, Scaling & Instrumentation Amplifier, Integrator & Differentiator, Comparator, Oscillator principal and Types, Frequency response and Frequency stability, Phase shift Oscillator

Unit – 4 Number of lectures = 12 Title of the unit: Micro-processor

Microcomputer systems and Hardware., Microprocessor architecture and Microprocessor system, Instruction and timing diagram, Introduction to 8085 basic instructions, Arithmetic operation, logic operation, branch operation, 16 bit arithmetic instructions., Arithmetic operation related to memory, Rotate and compare instructions, Stack and subroutines, programming of 8085 using instructions, Introduction to Microcontroller

12. Brief Description of self-learning / E-learning component

For understanding the basic concepts in detail, students may get the study materials from these Elearning links

https://ocw.mit.edu/courses/physics/

https://nptel.ac.in/courses/117107094/

https://www.youtube.com/watch?v=CeD2L6KbtVM

13. Books Recommended

- 1. J. Millman and C. C. Halkies, Integrated Electronics. Tata McGraw-Hill, ISBN: 978-0-07-462245-2.
- 2. R. P. Jain. Modern Digital Electronics, Tata McGraw Hills, ISBN: 9780070669116
- 3. Malvino and Leach, Digital Electronics, ISBN- 978-0-07-014170-4
- 4. S. M. Sze, Semiconductor Devices: Physics and Technology, ISBN-13: 978-8126516810
- Ramakanth A. Gayakwad, Op-Amps & Linear Integrated Circuits. 2nd ed, ISBN-13: 978-8120320581
- 6. A.P. Malvino and Donald, Principal and Application in Electronics. Tata McGraw-Hill, ISBN : 0070141703
- 7. J. D. Rayder, Fundamental of electronics, ISBN-13: 978-8120300828

1.	1. Name of the Department: Physics						
2.	Course Name	Electronics Lab	L	Τ		Р	
3.	Course Code	17080403	0	0		2	
4.	Type of Course (u	se tick mark)	Core ()	DSE $()$		SEC ()	
5.	Pre-requisite		6. Frequency	Even	Odd ()	Either	Every
	(if any)		(use tick	()		Sem ()	Sem
			marks)				0
7	Total Number of Lectures Tutorials Practical						

Lectures = 0 Tutorials = 0 Practical = 26

8. Course Description:

In this course students will gain practical knowledge about various semiconductor and optoelectronic deviceslike JFET, MOSFET, LEDetc and use of op amp for different arithmetic operations.

9. Course Objectives:

To study the characteristics of JFET, MOSFET, Solar cell

To use op amp for different arithmetic operations, square, ramp generator and Wein bridge oscillator

10. Course Outcomes (Cos):

After successful completion of the course, students will be able to

Correlate the theoretical concepts and identify its practical applications through experiment procedure and results.

11. List of Experiments

1. To study the characteristics of Junction Field Effect Transistor.

- 2. To study the characteristics of Metal Oxide Semiconductor Field Effect Transistor
- 3. To study the characteristics of SCR and its application as a switching device.
- 4. To use Op-Amp for different Arithmetic Operations.
- 5. To study the characteristics of UJT.

6. To study the characteristics of a solar cell and calculate its fill factor.

7. To design an (i) inverting amplifier and (ii) non-inverting amplifier, of a given gain using operational amplifier.

8. To use Op-Amp as Full Wave Rectifier.

9. To study the characteristics of optoelectronics Devices (LED, photo-detector).

10. To design combinational Logic Circuits using logic gates.

Note: The list of the experiment given above should be considered as suggestive of the standard and available equipment. The faculty members are authorised to add or delete from this list whenever considered necessary.

12. Book Recommended:

- 3. R. A. Dunlup. Experimental Physics: Modern Methods. New Delhi: Oxford University Press, ISBN- 0195049497
- 4. B. K. Jones. Electronics for Experimentation and Research. Prentice-Hall, ISBN 13:

1. Name of the Department: Physics						
2. Course Name	Solid State	L	Т		Р	
	Physics					
3. Course	17080404	4	0		0	
Code						
4. Type of Co	urse (use tick	Core ()	DSE (V)	SEC ()	
mark)						
5. Pre-	Physics at	6. Frequency	Even	Odd	Either	Every
requisite	graduation	(use tick marks)	(√)	0	Sem ()	Sem ()
(if any)	level					
7. Total Number of Lectures, Tutorials, Practical						
Lectures = 40		Tutorials = 0	Pra	actical =	0	
8. Course Des	scription:					

This course will deepen your understanding of the different types of crystal structures, lattice dynamics and band structure of the solids.

9. Course Objectives:

- 1. To study the basics of crystallography
- 2. To study the basic of origin of band gap in different types of solids.
- 3. To analyze the electrical and thermal properties of metals.

10. Course Outcomes (Cos):

After successful completion of the course, students will

- 1. have a basic knowledge of crystal systems and spatial symmetries
- 2. understand the concept of reciprocal space and be able to use it as a tool to know the significance of Brillouin zones
- 3. be able to calculate thermal and electrical properties in the free-electron model
- 4. be able to outline the importance of solid-state physics in the modern society

Unit-1Number of lectures = 11Title of the unit: Crystal Structure	11.	Unit wise d	etailed content	
	Unit-1		Number of lectures = 11	Title of the unit: Crystal Structure

Bravais lattice, Primitive vectors, Primitive, conventional and Wigner-Seitz unit cells, Crystal structures and lattices with basis, Lattice planes and Miller indices, Simple crystal structures- Sodium chloride, Diamond, and Zinc-blende structures, Determination of crystal structure by diffraction, Reciprocal lattice and Brillouin zones (examples of sc, bcc and fcc lattices), Bragg and Laue formulations of X-ray diffraction by a crystal and their equivalence, Laue equations, Ewald construction, atomic structure factors, Experimental methods of structure analysis: Types of probe beam, the Laue, rotating crystal and powder methods.

Unit – 2	Number of	Title of the unit: Lattice dynamics and thermal properties
	lectures = 11	

Classical theory of lattice vibration (harmonic approximation), Vibrations of crystals with monatomic basis-Dispersion relation, First Brillouin zone, Group velocity, Two atoms per primitive basis-acoustical and optical modes; Quantization of lattice vibration: Phonons, Phonon momentum, Inelastic scattering of neutrons by phonons; Thermal properties: Lattice (phonon) heat capacity, Normal modes, Density of states in one and three dimensions, Models of Debye and Einstein.

Unit – 3	Number of	Title of the unit: Free electron gas
	lectures = 8	

Free electron gas model in three dimensions: Density of states, Fermi energy, Effect of temperature, Heat capacity of the electron gas, Experimental heat capacity of metals, Thermal effective mass, Electrical conductivity and Ohm's law, Hall effect; Failure of the free electron gas model

Unit – 4	Number of	Title of the unit: Band Theory
	lectures = 10	

Periodic potential and Bloch's theorem, Kronig-Penney model, Wave equation of electron in a periodic potential, Solution of the central equation, Approximate solution near a zone boundary, Periodic, extended and reduced zone schemes of energy band representation, Number of orbitals in an energy band, Classification into metals, semiconductors and insulators.

12.Brief Description of self-learning / E-learning component

For understanding the basic concepts in detail, students may get the study materials from these Elearning links

https://ocw.mit.edu/courses/physics/ https://nptel.ac.in/courses/115105099/ https://nptel.ac.in/courses/115104109/

13.Books Recommended

1. Introduction to Solid State Physics, Charles Kittel, John Wiley and Sons, ISBN: 978-8126535187

2. Solid State Physics, Neil W. Ashcroft and N. David Mermin, Holt, Rinehart and Winston, ISBN: 978-0030839931

3. Applied Solid State Physics, Rajnikant, Wiley India, ISBN: 9788126522835

4. Solid State Physics, S O Pillai, New Age International Publishers, ISBN: 978-9386070920

5. Elements of Solid State Physics, J P Srivastava, PHI Learning Private Limited, ISBN: 978-81-203-5066-3

1. Name of the	1. Name of the Department: Physics						
2. Course Name	Solid State	L	Т			Р	
	Physics Lab						
3. Course	17080405	0	0			2	
Code							
4. Type of Course (use tick		Core ()	DSE $()$)	SEC ()	
mark)							
5. Pre-		6. Frequency	Eve	en	Odd	Either	Every
requisite		(use tick marks)	(√)		0	Sem ()	Sem ()
(if any)							
7. Total Number of Lectures, Tutorials, Practical							
Lectures = 0		Tutorials = 0		Pra	ctical =	26	

8. Course Description:

In this course students will gain practical knowledge about lattice dynamics, band gap and basic concepts of semiconductor devices

9. Course Objectives:

The major objective of this course is to make students understand the basic concepts of solid state physics through standard set of experiments. While performing these experiments students must correlate them with the corresponding theory

10. Course Outcomes (Cos):

After successful completion of the course, students will be able to

- 1. Distinguish between the type of semiconductors and find their band gap
- 2. to understand the lattice dynamics
- 3. correlate the theoretical concepts with the experiments

11. List of Experiments

- 1. To study Hall effect in semiconductor to determine Hall voltage, concentration of charge carriers and the type of semiconductor etc.
- 2. To measure the band gap of Germanium using four probe method.
- 3. Study of dispersion relation for the mono-atomic lattice comparison with theory.
- 4. Determination of cut-off frequency of the mono atomic lattice
- 5. Study of the dispersion relation for the di-atomic lattice acoustical mode and optical mode energy gap. Comparison with theory.
- 6. To determine the value of e/m by Thomson's method
- 7. To determine band gap using van der Paw technique
- 8. To determine the value of e/m by helical method
- 9. To study conductivity of thin film by four probe method.
- 10. Two probe method for resistivity measurement.

Note: The list of the experiment given above should be considered as suggestive of the standard and available equipment. The faculty members are authorised to add or delete from this list whenever considered necessary.

12. Book Recommended:

1. Harnam Singh and P S Hemne, Practical Physics, S Chand, ISBN: 9788121904698

2. R. A. Dunlup. Experimental Physics: Modern Methods. New Delhi: Oxford University Press, 978-0195049497

1. Name of the Department: Physics							
2. Course Name	Introductory Nuclear Physics	L		Т			Р
3. Course Code	17080406	4	0			0	
4. Type of Course (u	ise tick mark)	Core ()	DSF	E(√)		ASE()	
 Pre-requisite (if any) Total Number of 1 	2. Frequency (use tick marks)	Even $()$ Odd ()		Either Sem ()	Every Sem ()		
Lectures = 52Tutorials = 0Practical = 0							
8. Brief Syllabus							
The syllabus is divid reactions.	led into four units i.e. N	uclear Properties, Nu	ıclear	Forces	, Nuclear	Models an	nd Nuclear

The course develops an understanding of theoretical and experimental approaches for nuclear Properties, forces between nucleons via two nucleon problem, development of structure of the nucleus and various models for nuclear reactions.

10. Course Outcomes (Cos):

After the successful completion of the course, students will be able to

1. Understand and Explain the concepts of Nuclear properties, forces, models and reactions in detail.

2. Understand approaches used in research in the field of Experimental and theoretical Nuclear Physics.

3. Use their knowledge in Analytical/Scientific Reasoning in area of Nuclear Physics.

4. Apply their knowledge in solving problems.

11. Unit wise detailed content

Unit-1	Number of lectures = 12	Title of the unit: Nuclear Properties

Nuclear mass, nuclear radii measurements – scattering and electromagnetic method, Nuclear electric and magnetic moments, Quantum properties of nuclear states, Binding energies, semi empirical mass formula. Liquid drop model, Outlines of Bohr and Wheeler theory.

Unit – 2	Number of lectures = 14	Title of the unit: Nuclear Forces

Nuclear Forces, The Deuteron Problem, Ground and excited states of Deuteron, Neutron-proton (n-p) scattering at low energies, Scattering length, Spin dependence, singlet state, Effective range theory in n-p scattering. Coherent and incoherent scattering, tensor forces and the deuteron Problem, proton-proton (p-p) scattering at low energy. Comparison between n-p and p-p scattering.

Unit – 3 Number of lectures = 14 Title of the unit: Nuclear Models

Evidence for nuclear shell structure, Nuclear Shell Model, Extreme single particle model, Square well potential, Harmonic oscillator potential, spin orbit coupling, Shell model predictions. Nuclear isomerism, Magnetic moment-Schmidt lines, electric quadrupole moment, Configuration mixing, Single particle model and Independent particle model, Nuclear Collective model: Collective modes of motion, Rotational energy spectra for even-even nuclei and odd-A nuclei, Energy spectrum with coupling of vibration and rotational motion.

Unit – 4	Number of lectures = 12	Nuclear Reactions

Breit-Wigner dispersion formula, the Compound nucleus, Continuum theory of cross section, Statistical theory of Nuclear Reaction. Optical model for nuclear reactions at low energies, Direct Reactions – Kinematics of stripping and pick-up reactions, theory of stripping and pick-up reactions.

12. Brief Description of self- learning / E-learning component.

To understand basic concepts in detail, students may get study materials on these links.

- 1. <u>https://onlinecourses.nptel.ac.in/noc18_ph02</u>
- 2. <u>https://www.mooc-list.com/tags/nuclear-physics</u>
- 3. www.nuclearonline.org/Courses.htm
- 4. <u>https://study.com/directory/category/Physical_Sciences/Physics/Nuclear_Physics.html</u>
- 5. <u>https://www.class-central.com/tag/nuclear%20physics</u>

13. Books Recommended

1. R. R. Roy and B. P. Nigam, "Nuclear Physics: Theory and Experiment", New Age International Pvt Ltd (1 January 2014). ISBN-978-8122434101

- 2. D.C. Tayal, "Nuclear Physics", Himalaya Publishing House, 2009 ISBN-13: 978-9350247433
- 3. M. K. Pal, "Theory of Nuclear Structure", Affiliated East-West Press, New Delhi. ISBN-978-8185336817.

4. Basic Ideas and Concepts in Nuclear Physics: K. Heyde, (Overseas Press India) (2005). ISBN-978-0750309806.

5. K. S. Krane, "Introductory Nuclear Physics", Wiley India Pvt. Ltd., 2008 ISBN-978-8126517855

1. Name of the Departr	nent: Physics							
2. Course Name	Introductory Nuclear Physics Laboratory	L	Т		P			
3. Course Code	17080407	0	0		2	2		
4. Type of Course (use	tick mark)	Core ()	DSE $()$	AEC ()	SEC ()	OE ()		
5. Pre-requisite (if any)		6. Frequency (use tick marks)	Even $()$ Odd ()		Either Sem ()	Every Sem ()		
7. Total Number of Leo	ctures, Tutorials, Pr	actical		L				
Lectures =		Tutorials =	Hours :	= 26				
8. Course Description:		•	•					
In this course student wi Counters, MCA, SCA, D	ll hand on the experim AC and CRO.	nents using weak radioad	ctive source	s, G.M. co	unters, Sci	ntillation		
9. Course Objectives:								
The course aims to prove behind nuclear technique	ide students with a presence of the students with a presence of the students o	ractical knowledge of the Particle detectors.	e particles id	lentificatio	n, basic el	ectronics		
10. Course Outcomes (Cos):							
 After the successful completion of the course, students will be able to 1. Understand and describe the particle Identification. 2. Understand and demonstrate the experimental knowledge in laboratory. 3. Analyse scientific data available from the experiments and explain. 4. Improve their research related skills. 								
11. List of Experiments								
 To study the var operating voltag Measurement of To investigate th To investigate th To find the abso a beta emitter. Source strength 	iations of count rate v e and the slope of Pla dead time. he statistics related to he statistics related to rption coefficient of g of a Beta Source	with applied voltage and tteau. measurements with a Ge measurements with a Ge given material using G.M	thereby dete eiger counter eiger counter I. counter ar	ermine the r – Poisson r- Gaussiar ad deduce e	plateau, th Distributi Distribut end-point e	on ion energy of		

Source strength of a Beta Source
 Measurement of Short Half life.

- 8. Calibration of Scintillation Spectrometer.
- 9. Pulse-Height Analysis of Gamma Ray Spectra.

10. Least square fitting of a straight line.
 Note: The list of the experiment given above should be considered as suggestive of the standard and available equipment. The faculty members are uthorized to add or delete from this list whenever considered necessary.

12. Books Recommended:

- 1. Techniques in Nuclear and particle Experiments by W.R. Leo (Springer), 1994. ISBN-978-3540572800
- 2. Radiation detection and measurement by Glenn F. Knoll (Wiley), 2010. ISBN: 978-0-470-13148-0
- 3. Introduction to Experimental Particle Physics by Richard Fernow (Cambridge University Press), 2001. ISBN-978-0511622588

1. Name of the Department: Physics								
2. Course Name Advanced		L	Т		Р			
	Applied Physics							
3. Course Code	17080408	4	0		0			
4. Type of Course (use tick mark)		Core ()	DSE()		OE()			
5. Pre-		6. Frequency	Even	Odd	Either	Every		
requisite		(use tick marks)	(√)	0	Sem ()	Sem ()		
(if any)								
7. Total Number of Lectures, Tutorials, Practical								
Lectures = 52		Tutorials = 0	Practical = 0					
8. Brief Syllabus:								

This course will give an introduction to transducer devices, applications of transducer, sensors, detectors, photonics, energy processing, energy storage and conversion systems.

9. Learning objectives:

The aim of this course is to

- 1. convey knowledge of conceptual physics and its applications including transducers
- 2. understand the different types of sensors and its applications
- 3. learn the fundamentals of photonics and its applications in Lasers.
- 4. understand the energy storage devices and conversion systems.

10. Course Outcomes (Cos):

After the successful completion of the course, students would be able to

- 1. understand the different types of transducers.
- 2. understand the construction and working principle of different types of sensors.
- 3. understand the concepts of photonics and get knowledge of the latest developments in Lasers and their applications.
- 4. analyze the concept of alternate energy storage devices.

11.	Unit wise detailed content	
Unit-1	Number of lectures = 13	Title of the unit: Transducers

Fundamentals of transducer, classifications and general characteristics; displacement transducers, strain gauges, pressure and force transducers, torque transducers, flow transducers, transducers for biomedical applications. Microelectromechanical systems (MEMS), microfabrication and

micromachining, advanced lithography techniques, diffusion & ion implantation, and high aspect ratio processes.

Unit – 2	Number of	Title of the unit: Sensors
	lectures = 12	

Resistive, capacitive, inductive, electromagnetic, thermoelectric, piezoelectric, piezoresistive, photosensitive and electrochemical sensors, toxic gas monitoring, thermal conductivity analyzers, colorimetric determination, sorption type dosimeters, non-dispersive infrared and ultraviolet sensors flame ionisation detector.

Unit – 3	Number of	Title of the unit: Introduction to photonics
	lectures = 13	

Science of light – evolution, ray/wave/statistical/quantum optics, wave phenomena – interference, diffraction, statistical properties of light – coherence, photons, photon properties – energy, flux, statistics, interaction of photons with atoms, light amplification, laser fundamentals, semiconductor junction characteristics, semiconductor light sources, semiconductor light detectors.

Unit – 4	Number of	Title	of	the	unit:	Alternate	Energy	Storage	and
	lectures = 14	Harve	stin	g					

Electrochemical energy storage devices – EMF, reversible and irreversible cells, free energy, thermodynamic calculation of the capacity of a battery, calculations of energy and power density of cells, types of batteries, factors affecting battery capacity, voltage and current level, types of discharge, applications of lithium ion batteries in electronic devices, and electric vehicle, basics of solar energy, brief history of solar energy utilization, various approaches of utilizing solar energy, formation of solar cell and its equation, fill factor and maximum power, silicon solar cell, tandem solar cell, dye sensitized solar cell; organic solar cell.

Brief Description of self-learning / E-learning component:

https://nptel.ac.in/courses/108/108/108108147/

https://nptel.ac.in/courses/108/106/108106135/

https://www.youtube.com/watch?v=G6MIQlIIozg&list=PLLy_2iUCG87BMH9aXArALEv_eH_f63k Qu

https://onlinecourses.nptel.ac.in/noc19_ee41/preview

12. Books Recommended

- 1. Yariv, Photonics: Optical Electronics in Modern Communications, Oxford University Press, ISBN: 978-0195687057.
- 2. Patranabis D, Sensors and Transducers, Prentice Hall India Learning Private Limited, ISBN: 978-8120321984
- 3. Fraden Jacob , Handbook of Modern Sensors: Physics, Designs, and Applications, Springer Nature (SIE), ISBN: 978-8132230984
- 4. Jacob Fraden, Handbook of Modern Sensors Hardcover, Springer Nature, ISBN: 978-3319193021

1. Name of the Department: Physics									
2. Cou	irse Name	Advanced Applied Physics	L	Т		P	P		
	~ ~ -					2			
3.	Course Code	17080409	0			2			
4.	Type of Course (use tick mark)	Core ()	DSE	AEC	SEC	OE ()		
5.	Pre-requisite		6. Frequency	Even	Odd	Either	Everv		
(if	f any)		(use tick	()	0	Sem	Sem		
			marks)			0	0		
7.	Total Number of	Lectures, Tutorials, Practica	al						
Lectur	$\frac{\cos}{\cos} = 0$		Tutorials = 0	Pr	actical	= 26			
8.	Course Descripti	on:							
Experi	ments include the c	haracteristics of transducer dev	vices, applications of la	ser and	solar ce	11.			
9.	Course Objective	es:							
To und	To understand the characteristics curves for transducer devices, sensors, solar cell and applications of laser.								
10.	Course Outcome	es (Cos):							
After s	successful complet	ion of the course, students wi	ll be able to						
	_	1. Understand the characte	ristic curve of transduc	er devid	ces.				
		2. Understand the operatio	n and applications of la	aser.					
		3. Understand the operatio	n of solar cell.						
11.	11. List of Experiments								
1.	To verify the characteristics of strain gauge.								
2.	To verify the characteristics of RTD (Resistance Temperature Detector) using wheat stone bridge.								
3.	To study the characteristics of piezoelectric transducer.								
4.	To plot the area characteristics and spectral characteristics of a solar cell.								
5.	To measure the peak power and beam divergence of a given laser beam.								
6.	Using He-Ne laser to measure width of a narrow slit.								
7.	Using He-Ne laser to measure diameter of a thin wire.								
8.	To study the characteristics of a semiconductor laser.								
9.	To study the characteristics of a solar cell (illumination Characteristics, Current Voltage								
Characteristics, Power Load Characteristics).

10. To count the number of slits in a diffraction grating using He-Ne laser.

Note: The list of the experiment given above should be considered as suggestive of the standard and available equipment. The faculty members are authorised to add or delete from this list whenever considered necessary.

12.	Book Recommended
1.	B.K. Jones, Electronics for Experimentation and Research. Prentice-Hall, ISBN-13: 978-0132507547
2.	R. A. Dunlup, Experimental Physics: Modern Methods, New Delhi: Oxford University Press, ISBN-
	13 : 978-0195049497
3.	K M Varier, A Joseph, Advanced Experimental Techniques in Modern Physics, Anu Books, ISBN:
	978-93-86306-29-6

1.	Name of	the Department: Phys	ics						
2.	Course	Spectroscopic	L		Т		Р		
	Name	Techniques							
3.	Course	17080410	4		0		0		
	Code								
4.	Type of (mark)	Course (use tick	Core ()		DSE(√)		SEC()		
5.	Prereq		6. Fre	equency	Even	Odd ()	Either	Every	
	uisite (if any)		(use tick marks)		(√)		Sem ()	Sem ()	
7.	Total Nu	mber of Lectures, Tut	orials, F	Practical					
Lectures = 52		Tutorials	$\mathbf{s} = 0$]	Practical =	= 0			
8. Course Description:									

This course includes basics of spectroscopy, UV/Visible spectroscopy, Mossbauer and X-ray Photoelectron Spectroscopy, nonlinear phenomenon and applications of Laser spectroscopy.

9. Course Objectives:

To understand the basics of different type spectroscopy and topics of current research interest such XPS like ESCA, EDAX etc., chemical shift, stoichiometric analyses and electronic structure.

10. Course Outcomes (Cos):

1. Demonstrate the comprehensive theoretical and experimental set up of basic spectroscopic techniques that use different spectroscopy

2. Different Spectroscopy in solving complex problems, and conceptualizing their solutions from Mossbauer and X-ray Photoelectron Spectroscopy

3. Experimental set up theoretical based skill in the spectroscopic and laser applications

4. Techniques and instrumentation for laser and spectroscopy with concepts and phenomena that are characteristic of lasers

11. Unit wise detailed content

Unit-1	Number of lectures = 13	Title of the unit: Basics of Spectroscopy and
		UV/Visible spectroscopy

Basics of Spectroscopy, Energy of electromagnetic radiation, Quantization of energy, Mechanisms of interaction of electromagnetic radiation with matter, Absorption peaks and line widths. UV/Visible Absorption Spectroscopy, Beer Lambert law, Deviations from Beer Lambert's law.

Unit – 2	Number of lectures = 13	Title of the unit: Mossbauer and X-ray Photoelectron
		Spectroscopy

Mossbauer Spectroscopy: the Mossbauer effect, experimental methods, hyperfine interactions, molecular and electronic structures, **X-ray Photoelectron spectroscopy:** Experimental technique, XPS spectra and its interpretations, other derivative forms of XPS like ESCA, EDAX etc., chemical shift, stoichiometric analyses, electronic structure.

Unit – 3	Number of lectures = 13	Title of the unit: Non-Linear Phenomenon and related
		spectroscopy

Non-linear phenomena and generation of short pulses, laser system for spectroscopy, instrumentation for detection of optical signals and time-resolved measurements, absorption spectroscopy, fluorescence spectroscopy, Raman spectroscopy, non-linear spectroscopy, ultra-fast laser spectroscopy.

Unit – 4	Number of lectures = 13	Title of the unit: Applications of Laser Spectroscopy

Cooling and Trapping of Atoms, Principles of Doppler Cooling, Polarization Gradient Cooling Qualitative Description of Ion Traps, Optical Traps and Magneto-Optical Traps, Bose Condensation, Applications of Laser.

12. Brief Description of self- learning / E-learning component:

For basic conceptual understanding and detail study, students may get the study material from the following links.

- 1. https://nptel.ac.in/courses/102103044/pdf/mod2.pdf
- 2. https://www.photonics.com/.../Lasers_Understanding_the_Basics
- 3. https://en.wikipedia.org/wiki/List_of_laser_applications
- 4. www.bgu.ac.il/~glevi/website/Guides/Lasers.pdf
- 5. ieeexplore.ieee.org/document/8048469/

13. Books Recommended

1. B.B Laud: Laser and nonlinear optics, ISBN No. 8122403247, 9788122403244, Publisher Wiley 1991

2. Harold J. Metcalf Peter van der Straten, Laser Cooling and Trapping, ISBN No. 978-0-387-98728-6 Springer, 1999.

3. Demtroder and Wolfgang: Laser Spectroscopy: Basic Concepts and Instrumentation and Instrumentation, ISBN No. 978-3-662-05155-9, 2003, Springer-Verlag Berlin Heidelberg

4. Svelto, Orazio : Principles of Lasers, Edition:4, ISBN No. 978-1-4757-6266-2, 1998, Publishers Springer US

3. J. M. Hollas. High Resolution Spectroscopy, 2nd Edit. ISBN: 978-0-471-97421-5, 1998, Wiley Publication

6. Anne Thorne, Spectrophysics, ISBN No. 978-94-009-1193-2, Edition. 1, 1988, Springer Netherlands.

1.	1. Name of the Department: Physics								
2.	Course Name	Spectroscopic	L	Т		Р			
		Techniques-Lab							
3.	Course Code	urse Code 17080411		0		2			
4.	Type of Course (use tick mark)		Core ()	DSE $()$		SEC ()			
5.	Pre-requisite		6. Frequency	Even	Odd ()	Either	Every		
	(if any)		(use tick marks)	(√)		Sem ()	Sem ()		
7.	Total Number of Lo	ectures, Tutorials, Pi	ractical						
Lectures = 0		Tutorials = 0	Practical = 26						
8.	8. Course Description:								

This course includes basics of spectroscopy, UV/Visible spectroscopy, Mossbauer and X-ray Photoelectron Spectroscopy, nonlinear phenomenon and applications of Laser spectroscopy

9. Course Objectives:

1. Demonstrate the experimental knowledge of basic spectroscopic techniques that use different spectroscopy and lasers

2. Experimental knowledge of spectroscopy in solving complex problems, and conceptualizing their solutions from Mossbauer and X-ray Photoelectron Spectroscopy

3. Laboratory exercises that illustrate the Provide a degree of experimental skill in the spectroscopic and laser applications

4. Research based knowledge on the techniques and instrumentation for laser and spectroscopy with concepts and phenomena that are characteristic of lasers

10. Course Outcomes (Cos):

After successful completion of the course, students will be able to correlate the theoretical concepts of different type of spectroscopy and identify its practical applications through experiment procedure and results

11. List of Experiments

1. To determine the variation of refractive index of the material of prism with wavelength and to verify Cauchy's dispersion formula.

2. To determine the wavelength of laser using Michelson Interferometer.

- 3. Measurement of Raman spectrum of CCl4 by Raman Spectroscopy
- 4. Measurement and analyses of fluorescence spectra of liquids/solids (I2) by fluoresce spectra photometer
- 5. Study of Photo luminance spectra of alkali metal by PL Spectroscopy
- 6. Measurement and analysis of Sodium by Photoelectron spectroscopy (XPS)
- 7. Measurement and analysis of ceramics and inorganic oxides by UV/Visible Absorption Spectroscopy

8. Measurement and analysis of emission spectrum Organic and Inorganic compound by Photo luminance spectroscopy

- 9. Determination of optical band gap using UV visible spectroscopy of Inorganic compounds
- 10. Study of balanced state of different atoms present in a Organic/Inorganic compound by XPS Spectroscopy
- 11. Study of lifetime of photo luminance emission spectrum using time resolve spectroscopy
- 12. Measurement of Band positions and determination of vibrational constants of AlO molecule
- 13. Measurement of Band positions and determination of vibrational constants of N2 molecule
- 14. Measurement of Band positions and determination of vibrational constants of CN molecule

Note: The list of the experiment given above should be considered as suggestive of the standard and available equipment. The faculty members are authorised to add or delete from this list whenever considered necessary.

12. Book Recommended:

1. W. Demtroder: Laser Spectroscopy: Basic Concepts and Instrumentation and Instrumentation, ISBN No.

978-3-662-05155-9, 2003, Springer-Verlag Berlin Heidelberg.

2. J. M. Hollas. High Resolution Spectroscopy, 2nd Edit. ISBN: 978-0-471-97421-5, 1998, Wiley Publication

3. Anne Thorne, Spectrophysics, ISBN No. 978-94-009-1193-2, Edition. 1, 1988, Springer Netherlands.

4. J. M. Hollas. Modern Spectroscopy, ISBN No. 978-0471911210, 1986, Wiley–Blackwell.

Skill Enhancement Course

Semester-I

1. Name of the Department: Physics							
2. Course Name	Computational	L		Т		Р	
	Methods &						
	Programming						
	(Matlab/Python)						
3. Course Code	17080108	2		0		0	
4. Type of Course (use	tick mark)	Co	ore ()	DSE ()		SEC $()$	
5. Pre-requisite		6.	Frequency	Even ()	Odd $()$	Either	Every
(if any)			(use tick marks)			Sem ()	Sem ()
7 T-4-1 N	-4		1				
7. Total Number of Le	ctures, Tutorials, Pr		cal	Draatio	$\mathbf{n} = 0$		
Lettures $= 50$		IU	1011a18 = 0	Tacuca	u – 0		
8. Course Description:							
Many problems in physic how to obtain solutions to	es need to be solved us o system of linear equa	sing atio	computational techn ns, differential equat	iques. This ions, etc us	course wil	ll teach stu tational m	idents ethods.
9. Course Objectives:							
To impart the basic kno computational techniques	wledge of computers to solve physics usin	an g ac	d MATLAB program	nming. To gramming l	give expo anguages.	osure abou	ıt various
10. Course Outcomes (0	Cos):						
1. To have basic understa	nding of MATLAB /I	Pyth	on and be able to des	sign, code,	and test sm	all progra	ums.
2. Be fluent in the use of	procedural statements	ass	ignments, conditiona	al statement	s, and loop	os.	
3. Self-directed and Life-long Learning.							
4. Provide an introduction to the Python programming language.							
11. Unit wise detailed co	ontent						
Unit-1 Number of	lectures = 9	Tit	tle of the unit: Prog	ramming i	n MATLA	В	

Introduction to MATLAB, arrays, loops, Element by element operations, built in function for analysing arrays, Creating and saving a script files, output commands. Symbolic Math and Applications in Numerical Analysis Solving an equation with one variable, finding a minimum or a maximum of a function, Numerical integration, Ordinary differential equations, Interpolation etc, Symbolic Math: symbolic objects and symbolic expressions, creating symbolic objects, creating symbolic expressions.

Unit – 2	Number of lectures = 7	Title of the unit: Roots of Equations

Roots of quadratic equation – Limits for real roots of a polynomial equation – Bisection method, False position method and Newton Raphson method for finding roots of the equations.

Unit – 3	Number of lectures = 7	Title of the unit: Linear Algebra

Eigen values and Eigen vector of matrix-inverse of a matrix- determinant – solution of linear systems of equations- Gauss elimination and pivotal condensation methods.

Unit – 4	Number of lectures = 7	Title of the unit: Integration and differentiation
----------	------------------------	--

Trapezoidal rule-Simpson's rule (one -third) solution of ordinary differential equation by Euler method and Runge-Kutta methods, Monte-Carlo Simulation and its applications

12. Brief Description of self learning / E-learning component

https://www.edx.org/course/programming-basics

https://www.edx.org/course/computational-methods-forpes-harvardx-423x-2

- 1. Matlab: A Practical Introduction to Programming and Problem Solving 3rd Edition. By Stormy Attaway (Author). ISBN-10: 0124058760, ISBN-13: 978-0124058767
- 2. https://www.math.unipd.it/~mrrusso/Didattica/NA-Yaounde/Manual.pdf.
- 3. E. Balagurusamy. Numerical Methods. New Delhi: Tata McGraw-Hill, 1999. ISBN-10 : 0074633112, ISBN-13 : 978-0074633113
- 4. A.K. Ghattak, T.C. Goyal and S.J. Chua. Mathematical Physics. New Delhi: Macmillan, 1995. ISBN-10 : 9386202018, ISBN-13 : 978-9386202017

Semester-II

1. Name of the Department: Physics							
2. Course Name	Physics of	L	Т		Р		
	Nanomaterials						
3. Course Code	17080208	2	0		0		
4. Type of Course (u	ise tick mark)	Core ()	DSE ()		SEC $()$		
5. Pre-requisite		6. Frequency	Even	Odd ()	Either	EverySem	
(if any)		(use tick	()		Sem()	0	
		marks)					
7. Total Number of	Lectures, Tutorials,	Practical					
Lectures = 30		Tutorials = 0	Praction	cal = 0			
8. Course Description	on:						
It includes Fundamenta Nanomaterials and Dev	al of Nanomaterials, N vices	Nanofabrication Technic	ques, Chara	acterization	n of Nanor	materials and	
9. Course Objective	s:						
The course aims to pro	ovide students with a	n understanding of the	basics of n	anomateri	als, techni	ques used in	
fabrication of nanomat	erials, characterizatio	on of different types of	nanomateri	als. It also	o gives the	idea how to	
design electric devices.	, magnetic and gas ser	nsors etc. using nanoma	terials.				
10. Course Outcomes	(COs):						
After the successful co	mpletion of the cours	e, students would be ab	le to				
1. understand the fundation	amentals of nanomate	rials.					
2. understand different	fabrication technique	es for the nanomaterials					
3. understand the basics of the different characterization techniques used in basic research in the field of nanoscience.							
3. describe the basic involved in the design of devices based on nanotechnology.							
11. Unit wise detailed content							
Unit-1	Number of	Title of the u	nit: Funda	mental of	Nanomate	rials	
	lectures $= 12$						

Definition of nanotechnology, Nanomaterials, Novel combination of properties of materials of nanoscale, Functional enhancement, Size dependence on melting point, Size dependence on vapour pressure, Nucleation, Size dependence on Chemical reactivity, Intermolecular interactions, Size dependence on Surface tension of solid surfaces, Quantum confinement & energy levels, Band structure, Density of states in 0D, 1D, 2D & 3D materials, Quantum dots, wires, & wells.

Unit - 2	Number of	Title of the unit: Nanofabrication Techniques
	lectures = 14	

Top down and bottom up approaches to nanofabrication, Nucleation & growth mechanism, Optical & electron beam lithography, Thin films deposition, Evaporation, Sputtering, Electrode position and sol Gel Technique, Plasma assisted chemical vapour deposition, Molecular beam epitaxy, Atomic layer deposition.

Unit - 3	Number of	Title of the unit: Characterization of Nanomaterials
	lectures = 12	

X-ray diffraction techniques, Scanning transmission electron microscopy, SEM, TEM, Contact &Non-contact methods of surface characterization, Atomic force microscopy, Surface plasma resonance techniques, Electron spectroscopy techniques like AES, XPS, SIMS

Unit - 4	Number of	Title of the unit: Nanomaterials and Devices
	lectures = 14	

Carbon based nanomaterials, Small and Large Fullerenes and Other Buckyballs, Carbon nanotubes and their Electronic structure, Graphene, Metal matrix composites, Single electron devices, Molecular electronic devices, Coupled quantum dots, Spintronics, Ultra-sensitive magnetic sensors, Spin dependent transistors, Photonic devices,

12. Brief Description of self-learning / E-learning component:

To understand basic concepts in detail, students may get study materials on following links.

https://onlinecourses.nptel.ac.in/noc18_ph02 https://ocw.mit.edu/courses/physics/ https://www.mooc-list.com/

- 1. John H. Davies. The Physics of Low Dimensional Semiconductors. Cambridge University Press.
- 2. J.J. Ramsden. Nanotechnology- An Introduction. William Andrew Elsevier.
- 3. Ning Xi and King W. Chiu Lai. Nano-optoelectronics Sensors and Devices. William Andrew Elsevier.
- 4. V.V. Mitin, V.A. Kochetp and M.A. Stroscio. Quantum Heterostructures: Microelectronics and Optoelectronics. Cambridge University Press.
- 5. G. Cao. Nanostructures and Nanomaterials: Synthesis, Properties and Applications. Imperial College Press.
- C.P. Poole and F.J. Owens. Introduction to Nanotechnology. New York: John Wiley. M. Wilson, K. Kannangara, M. Simmons and B. Raguse. Nanotechnology. Overseas Press.

Semester-III

1.	. Name of the Department: Physics						
2.	Course Name	Lasers and its	L	Т		Р	
		applications					
3.	Course Code	17080301	2	0		0	
4.	Type of Course (use	e tick mark)	Core ()	DSE ()		SEC ($$)	
5.	Pre-requisite	Physics at	6. Frequency	Even ()	Odd ($$)	Either	Every
	(if any)	graduation level	(use tick marks)			Sem ()	Sem ()
7.	7. Total Number of Lectures, Tutorials, Practical						
Le	Lectures = 30 Tutorials = 0 Practical = 0						
8.	8. Course Description:						

This course provides an introduction to the fundamental principles governing the operation and design of coherent light sources and applications of lasers.

9. Course Objectives:

The aim of this course is to

- 1. understand the fundamentals of LASERs.
- 2. understand the unique properties of LASERs.
- 3. explain the different types of LASERs.
- 4. demonstrate the applications of LASER.

10. Course Outcomes (COs):

After the successful completion of the course, students would be able to

- 1. describe spontaneous and stimulated emission, population inversion and other basic concepts of LASER.
- 2. describe properties of LASER and various methods of pulsing techniques.
- 3. understand the construction and working of different types of LASER.
- 4. understand the applications of different LASERs

10. Unit wise detailed content

Unit-1Number of lectures = 8Title of the unit: Basic concepts of LASER

Introduction to LASERs, Interaction of Light with matter, Einstein's concept of stimulated emission, Calculation of Einstein's coefficients, Population inversion, 3-level system and 4-level system, components of LASERs,

Unit - 2Number of lectures = 7Title of the unit: Properties of Laser & Pulsing techniques

Modes of LASER cavity and standing waves, Transverse modes of Laser Cavity. Continuous and pulsed Lasers. Properties of Laser: Directionality, Intensity, Coherence and Monochromaticity. **Pulsing Techniques:** Cavity dumping, Q – switching, Mode locking.

Unit – 3 Number of lectures = 8 Title of the unit: Types of LASERs

Types of Lasers: Solid State LASERs (Ruby LASER), Atomic and Ionic Gas LASERs (He-Ne LASER), Molecular Gas LASERs (*CO*₂ *LASER*), Chemical LASERs (Iodine LASER).

Unit – 4 Number of lectures = 7 Title of the unit: LASER applications

Laser applications: Medical, Defense and Transport usages, LIDAR technique, Internet of Thing sensors, rocket navigation, communication, LASER spectroscopy, barcode processing, printing.

11. Brief Description of self -learning / E-learning component

https://nptel.ac.in/courses/104104085/12

https://ocw.mit.edu/resources/res-6-005-understanding-lasers-and-fiberoptics-spring-2008/laser-fundamentalsi/

- 1. A.K. Katiyar, C.K. Pandey, Manisha Bajpai, Fundamentals of Laser Systems and Applications, Wiley, ISBN : 978-8126568260
- 2. Dr M N Avadhanulu, Dr P S Hemne, An Introduction to Lasers: Theory and Applications, S Chand, ISBN: 9788121920711
- 3. K Thyagrajan, AGhatak, Lasers: Fundamentals and Applications, Springer, ISBN : 978-9352745531

Ability Enhancement Compulsory Course (AECC)

1. Name of the Depart	1. Name of the Department: Physics					
2. Course Name	Professional ethics and human value	L		Т	Р	
3. Course Code	17080107	2		0		0
4. Type of Course (use	1. Type of Course (use tick mark)		DSE ()	AECC (✓)	SEC ()	OE ()
5. Pre-requisite (if any)	NA	6. Frequency (use tick marks)	Even ()	Odd (✓)	Either Sem ()	Every Sem ()
7. Total Number of Le	ectures, Tutorials, P	ractical		1		
Lectures $= 30$		Tutorials = 0		Practical	l = 0	
8. Course Description	:					
This course provides stud history and day to day 1 family.	dents with the knowl ife will make the stu	edge of ethics in idents more respo	profession onsible to	nal life. Sor wards their	me of the ex	amples from , society and
9. Course Objectives:						
1. To develop ethical and human values in students						
2. To develop the respon	sibility in students a	t professional and	l societal	levels.		
10. Course Outcomes (COs):						
1. The students will understand the values of professional ethics and moral values deeply.						
2. The students will be able to take strong decisions and perform their duties responsibly as on professional.						
11. Unit wise detailed c	ontent					

Semester-I

Unit-1Number of lectures = 8Title of the unit: Ethics and Human Values

Definition, History and Development of Ethics, Universal declaration on Bioethics. Theories related to Bioethics: Utilitarian theory, Deontological theory and Communication theory

TI--- 4 1

Unit-1Number of lectures = 7Title of the unit: Human Values

Human Rights and Values: Autonomy, Consent, Equality, Confidentiality, Vulnerability and Personal Integrity

Environmental Ethics, Animal ethics

Unit - 2Number of lectures = 7Title of the unit: Professional Ethics

Need and Importance of professional ethics, Goals, Dignity of Labour, IRB & its functions, Authorship

Religious and Cultural Values, Importance of a Family, Guidance to youngsters, Gender Equality

Unit - 2Number of lectures = 8Title of the unit: Responsibility

Responsibilities towards Safety and Risk, Voluntary v/sIn voluntary Risk, Designing/Research for Safety – Risk, Benefit Analysis, Accidents. Disaster ethics,

Ethics in Media and Technology, Research Ethics, Intellectual Property Rights.

12. Brief Description of self learning / E-learning component

https://www.youtube.com/watch?v=cFOZplkRqsk&authuser=2 https://www.youtube.com/watch?v=HJk1Eodmf9A&authuser=2 https://www.youtube.com/watch?v=Fqt7m8LH5GY&authuser=2 https://youtu.be/2VYF_t51FyE https://youtu.be/hjzA_rZG-bU

- 1. Professional Ethics and Morals by Prof.A.R.Aryasri, DharanikotaSuyodhana Maruthi Publications, ISBN (13) : 978-81-224-2301-3
- 2. Professional Ethics and Human Values by A. Alavudeen, R.Kalil Rahman and M. Jayakumaran University Science Press, ISBN 0-07-084175-6
- 3. Professional Ethics and Human Values by Prof.D.R.Kiran-Tata McGraw-Hill 2013, ISBN : 978-81-224-2301-3

Semester-II

1. Cours	e Name	Research Methodology and Technical Writing			L	Т			Р							
2. Cours	e Code	17080207				2	2 0		0							
3. Type	of Course (use	e tick mark)		Core () DSE		E () AE		CC (🗸)								
4. Pre-re	quisite	B.Sc.		5. Freque	ncy	Even	Odd ()	Eith	Either Eve							
(if an	y)			(use marks)	tick	(✓)		Sem	0	Sem ()						
6. Total	Number of L	ectures, Tutorials, Pr	acti	cal												
Lectures =	= 30		Tut	torials = Nil		Prac	tical = Nil									
7. Cours	e Description	:														
This cours qualitative research n scientific i	This course offers an overview of research methodology including basic concepts employed in quantitative and qualitative research methods. The need for research and literature review, steps in conducting research, research methods associated with conducting scholarly research, lab safety measures, ethical, legal social & scientific issues in research are included.															
8. Cours	e Objectives:	:														
The object	ives of this co	urse are to:														
 understand some basic concepts of research and its methodologies identify appropriate research topics select and define appropriate research problem and parameters organize and conduct research in a more appropriate manner write a research report and thesis 																
9. Cours	e Outcomes (9. Course Outcomes (COs):						

On completion of the course, each student will be able to:

- 1. have basic knowledge on qualitative research techniques.
- 2. have adequate knowledge on measurement & scaling techniques as well as the quantitative data analysis.
- 3. demonstrate knowledge of research processes (reading, evaluating, and developing).
- 4. perform literature reviews using print and online databases.
- 5. identify, explain, compare, and prepare the key elements of a research proposal/report.

10. Unit wise	0. Unit wise detailed content				
Unit-1	Number of lectures = 8	Title of the unit: Introduction of Research Methodology			

Introduction and basic concepts in Research Methodology: Meaning of research, objectives and significance of research, Criteria for good research & problems encountered by research scholars.

Unit-2	Number of lectures = 8	Title of the unit: Identification of Research Problems
--------	------------------------	--

Research Problem: Necessity and techniques of defining research problem, Formulation of research problem, Objectives of research problem

Literature search- source of information

Unit – 2 Nu	umber of lectures = 8	Title of the unit: Research Design
		5

Research Design: Meaning, need and features of good research design, Basic Principles of Experimental Designs, Design of experiments and performing experiment.

Data Collection and Validation: Primary & secondary data collection, case study method etc. Data preparations, processing, analysis & interpretation

Unit – 4	Number of lectures = 6	Title of the unit: Report Writing
Umi – 4	Number of lectures $= 0$	The of the unit. Report writing

Writing of report: Basic concepts of paper, their writing, review of literature, Concepts of Bibliography and References, significance of report writing, steps of report writing

11. Brief Description of self learning / E-learning component

- 1. http://www2.ift.ulaval.ca/~chaib/IFT-6001/articles/RMethodology_Marzuki_1.pdf
- 2. https://shodhganga.inflibnet.ac.in/bitstream/10603/71970/14/14_chapter%204.pdf
- 3. http://www.tamuc.edu/academics/cvSyllabi/syllabi/201440/40503.pdf

12. Books Recommended

- 1. Blum, Deborah and Mary Knudson, eds. A field guide for science writers: the official guide of the National Association of Science Writers, New York: Oxford University Press, 1997.
- 2. Davis, Martha. Scientific Papers and Presentations. San Diego: Academic Press, 1997.
- 3. Fuscaldo, AA, Erlick, BI, Hindman, B. Laboratory Safety: Theory and Practice. New York: Academic Press, 1980.
- 4. Bajpai, PK. Biological Instrumentation and Methodology. New Delhi: S. Chand & Co. Ltd. 2006.
- 5. CR Kothari, Research Methodology: Methods & techniques, Gaurav Garg. New Age Publishers.

Note: Syllabus to be revised and updated every two years based upon the academic, industrial and scientific needs.