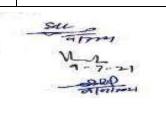
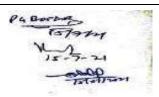
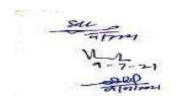
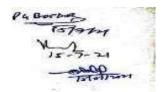

	MTech/CSE/FT/1/CC1: Advanced Database Systems							
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment	
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods	
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance	

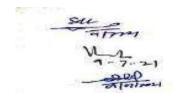

Course Objectives: The objective of this course is to get the students familiar with different concepts related to database.

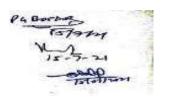

database.												
Course Outcomes	At the	end of th	nis cours	e, the stu	dent wil	l be able	e to:					
CO1		lefine: 3-schema architecture, ER diagrams, EER model, functional dependencies, normal										
		orms, data types, views in SQL, concurrency control techniques, database security issues,										
	_			nd clien								
CO2				relationa								
		_	nstraints	and vie	ws, reco	very tec	chnique	es, data	wareh	iouse, a	and disti	ibuted
CO3	databa		COI				C)I				
COS			_	L statem ontrol and				_		s, depe	ndencie	s, data
CO4				super c		•	_			norma	1 forms	SOI
204	_			es, data s			_					_
CO5	_			class, in								
			_	s, securit			_					,
CO 6	design	: databas	e for a p	articular	applicat	ion.			Ĭ			
	CO-PEO Mapping Matrix for Course MTech/CSE/FT/1/CC1											
COs	PEO	1	PE	EO2		PEO3		PE	EO4		PEO	5
CO1	1			1		3			3		3	
CO2	2		,	2		3			3		3	
CO3	3		,	3		3			3		3	
CO4	3		•	3		3	İ		3		3	
CO5	3			3		3			3		3	
CO 6	3		•	3		3			3		3	
Average	2.5	2.5 2.5 3 3 3										
	CO-	PO Map	ping Ma	atrix for	Course	MTech	/CSE/	FT/1/C	C1			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	1	-	-	-	-	1	3




CO2	2	1	1	3	1		1	-	-	-	_	2	3
CO3	3	1	1	3	3		1	-	_	-	-	3	3
CO4	3	3	1	3	1		1	-	-	-	-	3	3
CO5	3	1	1	1	3		1	-	-	-	-	3	3
CO 6	3	3	3	3	3		1	-	-	-	-	3	3
Average	2.5	2	1.33	2.33	2	ĺ	1	-	-	-	-	2.5	3
	CO-P	SO Map	ping M	atrix foi	· Cou	rse:	MTecl	h/CSE	/FT/1/	CC1			
COs	PS	SO1		PSO2			PSO3		F	SO4		PSO:	5
CO1		3		2			1			-		3	
CO2		3		2			2			-		3	
CO3		3		2			3			-		3	
CO4		3		2			3			-		3	
CO5		3		2			3			-		3	
CO 6		3		2			3			-		3	
Average		3		2			2.5			-		3	
	Course Content MTech/CSE/FT/1/CC1: Advanced Database Systems												
Unit - I	Databas Independent Constrair Inheritant specializa model C	dence, Fints and nce, Spation and	ER Diag Relation Pecializated Id Gener	rams, Nonal Date tion an alization	aming abase d Go a. Rela	g con Sch enera ation:	nventionemas, alizational al Mod	ons and EER on, Co del: Re	d Desi model onstrai	gn Issu : Subc nts ar	ues. Re lasses, id cha	lational Super racterist	Model classes, tics of
Unit - II	Informa forms b Decomp Data De SQL.	oased or osition,	Primai Multiva	ry keys: lued de _l	1NF pende	F, 2N ncies	NF, 3Ns and	NF and 4NF, J	d BCN IOIN (NF, Pro depende	operties encies a	of Re and 5Nl	lational F. SQL
Unit - III	Introdu Databas algorithi	e recove	ry techi	niques: I	Deferr	ed u	pdate	and In			-		_
Unit - IV	Data Warehousing : Components, Building a data warehouse, Data extraction, cleanup and transformation, OLAP Future Trends in data models : Semantic data models, Active and Spatial databases, Temporal databases, Multimedia databases, Distributed Database concepts and Client Server Architecture												
Text/Reference Books													
Text Books	1. Elmasri&Navathe: Fundamentals of Database System, 3e, Addison Wesley, New Delhi. 2. Korth&Silberschatz: Database System Concept, 4e, McGraw Hill International Edition.												
Reference Books	1. C.J.	Date: A	n Introd	uction to	Data	base	Syster	n, 7e, <i>A</i>	Addiso	n West	ern Nev	v Delhi.	

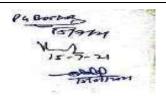
- 2. Abbey Abramson & Cory: ORACLE SI-A Beginner's Guide Tata McGraw Hill Publishing Company Ltd.
- 3. Hector G.M., Ullman J.D., Widom J., "Database Systems: The Complete Book", Pearson Education.

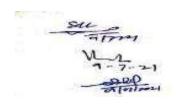




	MTech/CSE/FT/1/CC2: Advanced Data Structures						
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/
					20 5 5		Attendance

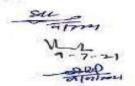

Course Objectives: The objective is to make students to learn different algorithms analysis techniques, analyse the efficiency of algorithm, apply data structures and algorithms in real time applications.

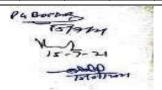

Course Outcomes	At the end of this cou	ırse, the student will	be able to:					
CO1		identify: data type, time and space complexity, stack, queue, linked list, trees, graph, searching, sorting and hashing.						
CO2	understand and expl searching, sorting, ar				ee, and graph,			
CO 3	apply and use: vario traversal operation, g techniques on data.							
CO 4	distinguish: time an linked list, binary, A' Dijkstra's and Krusk	VL, B tree and multi	iway search tre	e, depth and bread	th first search,			
CO5	select: algorithm, dat in a given situation.	a representation tech	nnique, searchi	ng and sorting tech	nnique suitable			
CO 6	design: algorithm, sta	ack, queue, linked lis	st, trees, graph,	searching, sorting	and hashing.			
	CO-PEO Mapping	Matrix for Course	MTech/CSE/F	TT/1/CC2				
COs	PEO1	PEO2	PEO3	PEO4	PEO5			
CO1	1	1	3	3	3			
CO2	2	2	3	3	3			
CO3	3	3	3	3	3			
CO4	3	3	3	3	3			
CO5	3	3	3	3	3			
CO 6	3	3 3 3 3						
Average	2.5 2.5 3 3 3							
	CO-PO Mapping Matrix for Course MTech/CSE/FT/1/CC2							



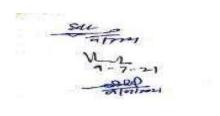
COs				[[
	PO1	PO2	P03	PO4	PO5	P06	PO7	P08	P09	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	-	-	-	1	3
CO2	2	1	1	3	1	-	-	_	-	-	2	3
CO3	3	1	1	3	3	-	-	-	-	-	3	3
CO4	3	3	1	3	1	-	-	-	-	-	3	3
CO5	3	1	1	1	3	-	-	-	-	-	3	3
CO 6	3	3	3	3	3	_	-	_	-	-	3	3
Average	2.5	2	1.33	2.33	2	-	-	-	-	-	2.5	3
	CO-P	SO Map	ping Ma	atrix for	Course	MTecl	h/CSE/F	T/1/CC	22			
COs	P	SO1		PSO2		PSC)3		PSO4		PSC)5
CO1		3		3		1			-		3	
CO2		3		3		2			-		3	
CO3		3		3		3			-	3		
CO4		3		3		3			-			
CO5		3		3		3			-		3	
CO 6		3		3		3			-		3	
Average		3		3		2.5			-		3	
	N	ITech/C	SE/FT/1	Course 1/CC2: A			Structi	ıres				
p	ntroduct erformar unctions,	ice analy	zing alg	gorithms	, design	ing alg	orithms,	time-S	pace t	rade-of	fs gro	wth of
o T	ADT: stack, operations on stacks, queue &its variations, operations, types of linked list operations performed on linked list. Trees: representation, traversals, operations, applications, binary search trees, AVL trees, Splay trees, B-trees, m-way search tree, implementation of threading on binary trees.											
S	Graphs : : representation, traversals(BFS, DFS, Topological sort), operations, applications, shortest path algorithms (Dijkstra's), minimum spanning trees, algorithms for finding minimum spanning tree (Kruskal, Prim's), Graph coloring.											
N H	 Sorting and Searching: linear search, binary search, insertion sort, Shell sort, Heap sort, Merge sort, Quick sort, Bubble sort, Bin sort, Radix sort. Hashing: hash Function, collision resolution, deletion, perfect hash functions, hash functions for Extendible files. 											
			Te	xt/Refer	ence Bo	ooks						
	 Seymour lipschutz, Data structures with C, MacGraw Hill. Adam Drozdek, Data Structures and Algorithm in C++, India Edition. 											

	3. M T Goodrich, Roberto Tamassia, Algorithm Design, John Wiley.
Reference Books	1. Alfred V. Aho, John E.Hopcroft, Jeffrey D.Ullman, Data Structures and Algorithms, Pearson Education.
	2. Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, Fundamental of Computer Algorithms, 2e, Universities Press.
	3. YedidyahLangsam, Moshe J.Augenstein, A. M.Tenebaum, Data Structures using C and C++, 2e, Pearson Education



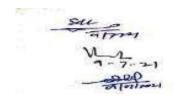


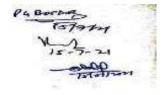
	N	Tech/CSE/FT/	/1/CC3: Adva	nced Opera	ating Systen	ns	
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/
					20 5 5		Attendance


Course Objectives: The objective of this course is to study, learn, and understand the major concepts of advanced operating systems, namely, multimedia operating systems, distributed and real time operating systems, threads, security and design issues in operating systems.

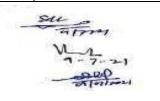
			- F	8 - 7 - 1 - 1								
Course Outcomes	At the	At the end of this course, the student will be able to:										
CO1		define: kernel, threads, concept of multimedia, distributed and real time operating system, issues in design, security and performance of operating system.										
						_						
CO2		stand a									n, conc	
						e opera	iting s	ystem,	issues 1	n desig	n, securi	ity and
CO3		mance o				ulina d	ialz aak	adulin	g ,real ti	ma sah	dulina	
03											ting syst	em.
CO4	classif	fy algor	rithm fo	or: proc	ess sch	neduling	and	disk s	chedulir	ng, mu	ual exc	lusion,
		ock, seci										
CO5						hedulin	g and	disk s	chedulii	ng, mu	tual exc	lusion,
	1	ock, secu	•	•								
	CO-P	EO Ma	pping I	Matrix	for Cou	ırse MT	Tech/C	SE/FT	/1/CC3			
COs	PE	O1		PEO2		P	EO3		PEO4	1	PEC)5
CO1		1		1			3		3		3	
CO2		2		2			3		3		3	
CO3		3		3			3		3		3	
CO4	:	3		3			3		3		3	
CO5	:	3		3			3		3		3	
Average	2	.4		2.4			3		3		3	
	CO-	PO Maj	pping N	Iatrix f	or Cou	rse MT	ech/CS	SE/FT/	1/CC3			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	1	-	-	-	-	1	3
CO2	2	1	1	1 3 1 1 2 3							3	
CO3	3	1	1	1 3 3 1 - - - 3 3							3	
CO4	3	3	1	3	1	1	-	-	-	-	3	3
CO5	3	1	1	3	3	1	-	-	-	-	3	3

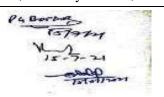
Average	2.4 1.8	1 2.6 1.8	1		2.4 3				
	CO-PSO Mappi	ng Matrix for Cou	irse MTech/CSE/	FT/1/CC3					
COs	PSO1 PSO2 PSO3 PSO4 PSO5								
CO1	3	2	1	-	3				
CO2	3	2	2	_	3				
CO3	3	2	3	-	3				
CO4	3	2	3	-	3				
CO5	3	2	3	-	3				
Average	3	2	2.4	-	3				
		Course Cor/FT/1/CC3: Advar	nced Operating Sy						
Unit - I	Multimedia operation compression stand scheduling for multiple compression stand scheduling	ards; process sched		•					
Unit - II	Distributed operating systems: Multiprocessor hardware and scheduling; multicomputer hardware and scheduling; distributed computing architecture; distributed system models; distributed shared memory and distributed file system; mutual exclusion and deadlocks in distributed systems; network operating system vs. distributed operating system.								
Unit - III	scheduling in real-	ng systems: Chara time operating sys on; threads – conce	tems; trends in ker	rnel design, exo-	•				
Unit - IV	principles and pa	operating systems radigms of interfa- ace of operating sy attacks, protection	ce design; issues estem; security –	in implementa	tion of operating				
	Text/Reference Books								
Text Books.	 Andrew S. Tanenbaum, Modern Operating Systems, 2e, Pearson – Prentice Hall. Pramod Chandra P. Bhatt, An Introduction to Operating Systems – Concepts and Practice, 3e, Prentice Hall, India. Charles Crowley, Operating Systems – A Design Oriented Approach, Tata McGraw Hill. 								
Reference Books	2. Stallings William 3. Godbole A.S., C	erating Systems, Pen, Operating System Operating Systems, Operating System	n, PHI Learning. Tata McGraw-Hill		Learning.				

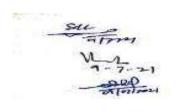


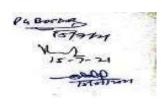

	MTech/CSE/FT/1/CC4:Advanced Computer Architectures							
Course Type	Course	Contact	Delivery	Maximum Marks		Exam	Assessment	
	Credit	Hours/Week	Mode	External Internal		Duration	Methods	
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment(s)/ Attendance	

Course Objectives: The objective of this course is to get the students familiar with different concepts related to computer architecture.

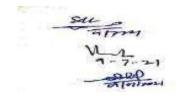

Course Outcomes	At the end of this course, the student will be able to:
CO1	define: concepts of parallel processing, computer architecture, principles of pipeline,
	collision free scheduling, ILP processors, branch handling, TLB, paging,
	segmentation, memory hierarchy technology, distributed and shared MIMD.
CO2	understand and explain: parallel processing, computer architecture, principles of
	pipeline, collision free scheduling, ILP processors, branch handling, TLB, paging,
	segmentation, memory hierarchy technology, switching and routing techniques,
	distributed and shared MIMD.
CO3	illustrate different types of: computational models, pipeline, scheduling, TLB, paging,
	segmentation, cache performance, network interconnection topologies, cache
	coherence problem and switching network.
CO4	categorize: level of parallelism, linear and non-linear pipeline, code scheduling, TLB,
	paging and segmentation, UMA, NUMA, CC-NUMA and COMA multiprocessors.
CO5	relate: concurrent and parallel execution, dependencies between instruction,
	synchronous and asynchronous pipeline, different code scheduling and hardware
	based cache coherence protocols.

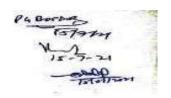

	CO-PEO Mapp	oing Matrix for C	ourse MTech/CSE	/FT/1/CC4	
COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	1	3	3	3
CO2	2	1	3	3	3
CO3	3	1	3	3	3
CO4	3	1	3	3	3
CO5	3	1	3	3	3
Average	2.4	1	3	3	3
	CO-PO Mappi	ng Matrix for Co	ourse MTech/CSE/	FT/1/CC4	'



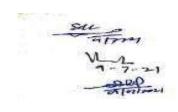

COs]	1		1					1		
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	-	-	-	-	1	3	
CO2	2	1	1 3 1					-	2	3			
CO3	3	1	1	1 3 3							3	3	
CO4	3	3	1 3 1								3	3	
CO5	3	1	1	3	3	-	-	-	-	-	3	3	
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3	
	CO-P	SO Ma	pping	Matrix	k for C	ourse N	/Tech/	CSE/F	T/1/CC	4			
COs	F	PSO1		PSO2		PS	SO3		PSO4		PSO	O5	
CO1		3 1 1 -									3	3	
CO2		3 1 2 -								3	}		
CO3		3		1			3	-			3		
CO4		3		1			3		-		3		
CO5		3		1			3		-		3	}	
Average		3		1		2	2.4		-		3	3	
	MTe	ech/CSI	E/ FT /1			ontent	nputer	Archit	ectures				
Unit - I	of pa archit Instru Pipeli Linea linear	rallel prectures action-Lining. In Pipel	proces evel-F Pipelin ine-clone-	sing, Tearallel and instructions in the control of	ypes a Proces ruction & tim	sors: Do proces	els of pependent sing, Sentrol, sp	parallel acies be ynchro beedup,	ism, Cletween in the court was the court with the court with the court was a court was a court with the court was a court was	lassifica nstructi Asyncl ncy &	ons, Pri hronous through	c concepts of parallel inciples of s pipeline, nput, Non g, internal	
Unit - II	Princi delay	iples of ed brar	pipel ching	ining, P , brancl	erform	nance m	easures multiwa	, VLIV ıy bran	V archit	ecture, guarded	Branch execut	structions, handling- ion, Code	
Unit - III	Memory Hierarchy Technology: inclusion, coherence and locality, virtual memory models, TLB, paging and segmentation, memory replacement policies, cache addressing models, cache performance issues, interleaved memory organization. Distributed MIMD architectures: Direct interconnection networks-interconnection topologies, switching techniques, routing												
Unit - IV	Shared MIMD architectures: Dynamic interconnection networks- shared path, switching networks- crossbar & multistage networks. Cache coherence problem, Hardware based cache coherence protocol- Snoopy cache protocol, Directory scheme, hierarchical cache												

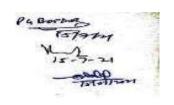
	coherence protocol. UMA, NUMA, CC-NUMA and COMA multiprocessors.												
Text/Reference Books													
Text Books	 Hennessy J.D., Patterson D.A., "Computer Architecture A Quantitative Approach", Elsevier India. Sima D., Fountain T., Kasuk P., "Advanced Computer Architecture-A Design Space Approach," Pearson Education. 												
Reference Books	1. Kai Hwang, "Advanced Computer Architecture – Parallelism, Scalability, Programmability", Tata McGraw Hill.												



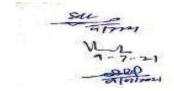

MTech/CSE	MTech/CSE/FT/1/CC5:Software Lab based on MTech/CSE/FT/1/CC1(Implementation in PL/SQL)												
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment						
	Credit Hours/Week		Mode	External	Internal	Duration	Methods						
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical						
							File						

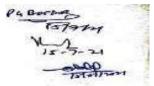
Instructions to paper setter for Final Term Examination: The Final Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.


Course Objectives: The objective of this course is to get the students hands on practice with advanced concepts of database (as covered in course MTech/CSE/FT/1/CC1) and their implementation in PL/SQL.

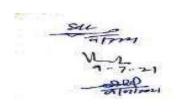

Course Outcomes	At the	end of th	nis course	e, the stu	dent wil	l be able	e to:						
CO1			na archit										
			es, views			-		echniqu	ues, dat	tabase s	ecurity i	issues,	
CO2			nodels, a					C ,	. 1	1 1	•		
CO2			agram, 1										
		_	nstraints	and vie	ws, reco	very tec	mique	es, data	warei	iouse, a	na aisti	ibutea	
CO3		databases. apply: inheritance, SQL queries, normal forms, SQL constraints, dependencies, data											
003		security, concurrency control and recovery techniques on database.											
CO4			subclass,							normal	forms,	SQL	
		constraints, functional dependencies, data security, concurrency control and recovery echniques.											
CO5		justify: subclass, super class, inheritance, SQL queries, normal forms, SQL constraints,											
		functional dependencies, data security, concurrency control and recovery techniques.											
CO 6	design:	design: database for a particular application.											
CO-PEO Mapping Matrix for Course MTech/CSE/FT/1/CC5													
COs	PEO1	l	PE	CO2		PEO3			PEO4			5	
CO1	1			1		3			3		3		
CO2	2		2	2		3			3		3		
CO3	3		3	3		3			3				
CO4	3		<i>'</i>	3		3			3				
CO5	3		<u> </u>	3		3			3		3		
CO 6	3		<u> </u>	3		3			3		3		
Average	2.5		2	.5		3			3		3		
	CO-l	PO Map	ping Ma	atrix for	Course	MTech	/CSE/	FT/1/C	CC5	l .			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	1	-	-	-	-	1	3	
CO2	2	1	1	3	1	1	-	-	-	-	2	3	
CO3	3	1	1	3	3	1	-	-	-	_	3	3	

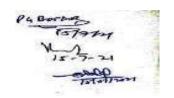
CO4	3	3	1	3	1	1	_	-	_	-	3	3				
CO5	3	1	1	1	3	1	_	-	-	-	3	3				
CO 6	3	3	3	3	3	1	-	-	-	-	3	3				
Average	2.5	2	1.33	2.33	2	1	-	-	-	-	2.5	3				
	CO-P	CO-PSO Mapping Matrix for Course: MTech/CSE/FT/1/CC5														
COs	PS	SO1		PSO2		PSO3		P	SO4		PSO	5				
CO1		3		2		1			-		3					
CO2		3		2		2			-		3					
CO3		3		2		3		-			3					
CO4		3		2		3		-			3					
CO5		3	İ	2 3 -		2		2		-		-		j	3	
CO 6		3		2		3		-			3					
Average		3		2		2.5	Ì		-	j	3					



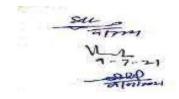

MTech/CSE	MTech/CSE/FT/1/CC6: Software Lab based on MTech/CSE/FT/1/CC2(Implementation in C/C++)													
Course Type	Course Type Course Contact Hours/Week		Delivery	Maximu	m Marks	Exam	Assessment							
			Mode	External	Internal	Duration	Methods							
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File							

Instructions to paper setter for Final Term Examination: The Final Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

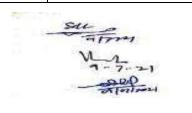

Course Objectives: The objective of this course is to get the students hands on practice with the advanced concepts of data structure and how to implement those concepts using C/C++. The course shall be based on MTech/CSE/FT/1/CC2.

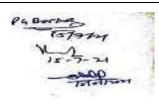

Course Outcomes	At the end of thi	At the end of this course, the student will be able to:											
CO1	identify: data ty linked list, trees	•	•		_	•	ıs data s	structu	re –	stack,	queue,		
CO2	understand and	explain	: abstract	data typ	es, dat	a structu							
GO 2	tree, and graph), searching, sorting, and traversing algorithms and hashing function.												
CO 3	apply and use: various data types, algorithms, stack, queue and link list operations, tree												
	traversal operation, graph representation and traversals algorithms, and searching sorting techniques on data.												
CO 4	distinguish: tim		space co	mplevity	ctack	and au	elle sin	ale de	auhle	and c	ircular		
CO 4													
	linked list, binary, AVL, B tree and multiway search tree, depth and breadth first search, Dijkstra's and Kruskal's algorithm, various searching and sorting techniques.												
CO 5	•								_		uitable		
	select: algorithm, data representation technique, searching and sorting technique suitable in a given situation.												
CO 6	design: algorithm, various data structure - stack, queue, linked list, trees, graph,												
searching, sorting and hashing.													
CO-PEO Mapping Matrix for Course MTech/CSE/FT/1/CC6													
COs	PEO1		PEC)2	P	EO3	P	EO4		PE	O5		
CO1	1		1			3		3		3	1		
CO2	2		2		3		3			3	1		
CO3	3		3		3		3			3			
CO4	3		3			3		3		3	}		
CO5	3	j	3			3		3		3			
CO 6	3		3			3		3		3			
Average	2.5		2.5	5		3		3		3			
	CO-PO Mapp	ing Ma	atrix for	Course ?	MTech	/CSE/F	Г/1/СС6	5	,				
COs											2		
	PO1	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	P011	PO12		
										P			

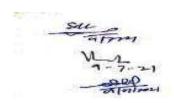
1	3	1	1	1	-	-	-	-	-	1	3	
2	1	1	3	1	-	-	-	-	-	2	3	
3	1	1	3	3	-	-	-	-	-	3	3	
3	3	1	3	1	-	-	-	-	-	3	3	
3	1	1	1	3	-	-	-	-	-	3	3	
3	3	3	3	3	-	-	-	-	-	3	3	
2.5	2	1.33	2.33	2	-	-	-	-	-	2.5	3	
CO-PSO Mapping Matrix for Course MTech/CSE/FT/1/CC6												
PS	SO1	F	PSO2		PSO:	3	I	PSO4		PSC) 5	
	3		3		1			-		3		
	3		3		2			-		3		
	3	j	3		3			-		3		
·	3		3		3			-		3		
3			3		3			-		3		
	3		3		3			-		3		
	3		3		2.5					3		
	2 3 3 3 2.5 CO-PSO	2 1 3 1 3 3 3 1 3 3 2.5 2 CO-PSO Mapp PSO1 3 3 3 3 3 3 3	2 1 1 1 3 1 1 3 3 1 1 3 3 3 3 3 2.5 2 1.33 CO-PSO Mapping Ma PSO1 PSO1 PSO1 PSO1 PSO1 PSO1 PSO1 PSO1	2 1 1 3 3 1 1 3 3 1 1 1 3 1 1 1 3 3 3 3 2.5 2 1.33 2.33 CO-PSO Mapping Matrix for One of the property of the prop	2 1 1 3 1 3 1 1 3 1 3 1 1 3 1 3 1 1 1 3 3 3 3 3 2.5 2 1.33 2.33 2 CO-PSO Mapping Matrix for Course PSO1 PSO2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 1 1 3 1 - 3 1 1 3 1 - 3 3 1 3 1 - 3 1 1 1 3 - 3 3 3 3 - 2.5 2 1.33 2.33 2 - CO-PSO Mapping Matrix for Course MTech PSO1 PSO2 PSO 3 3 1 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 1 1 3 1 - - 3 1 1 3 3 - - 3 1 1 3 1 - - 3 1 1 1 3 - - 3 3 3 3 - - 2.5 2 1.33 2.33 2 - - CO-PSO Mapping Matrix for Course MTech/CSE/F PSO1 PSO2 PSO3 3 3 1 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <	2 1 1 3 1 - - - 3 1 1 3 3 - - - 3 1 1 1 3 - - - 3 3 3 3 - - - 3 3 3 3 - - - 2.5 2 1.33 2.33 2 - - - CO-PSO Mapping Matrix for Course MTech/CSE/FT/1/CCO PSO1 PSO2 PSO3 II 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 1 1 3 1 - - - - 3 1 1 3 1 - - - - 3 1 1 1 3 - - - - 3 3 3 3 - - - - 2.5 2 1.33 2.33 2 - - - - 2.5 2 1.33 2.33 2 - - - - 2.5 2 1.33 2.33 2 - - - - 2.5 2 1.33 2.33 2 - - - - 2.5 2 1.33 3 1 - - - - 2.5 2 1.33 3 1 - - - - - - 2.5 2 1.33 3 1 - - - - - - - - -	2 1 1 3 1 -	2 1 1 3 1 - - - - 2 3 1 1 3 3 - - - - - 3 3 1 1 1 3 - - - - - 3 3 3 3 3 3 - - - - - 3 2.5 2 1.33 2.33 2 - - - - - - 2.5 CO-PSO Mapping Matrix for Course MTech/CSE/FT/1/CC6 PSO1 PSO2 PSO3 PSO4 PSO 3 3 1 - 3 3 3 3 - 3 3 3 3 - 3 3 3 3 - 3 3 3 3 - 3 3 3 3 - 3 3 3 3 - 3 3 3 <	

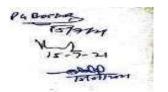


	MTech/CSE/FT/2/CC7: Advanced Web Technology												
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment						
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance						

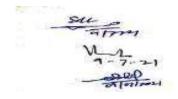

Course Objectives: The objective of this course is to get the students familiar with different concepts related with HTML, Java Scripts, Search Engines and CMS.

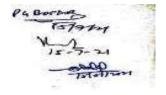

, 1 , 6													
Course Outcome	es At the end of	this course, the stud	lent will be able to:										
CO1	MySQL, searc	ch engine and conte	TML, CSS, XHTM ent management sys	tems.	•								
CO2		escribe: HTML common tags, HTML5 capabilities and use of XML, JavaScript concept											
		• -	ine techniques and o	*									
CO3			L, JavaScript with										
		e result using SEC) techniques, Web	hosting and differ	ent type of CMS								
CO4	technologies.	tionship of UTMI	with XML, building	g quary on tables o	nd forms improve								
004		_			_								
	,	unking using search engine optimization techniques, analyze different CMS like Vordpress, Joomla and Drupal with help of their features.											
CO5			elationship of HTM		L.								
	•	ent side or server si	•										
	evaluate: quer	ies on table and for	ms using MySQL.										
			higher ranking in se										
CO6			CSS, XML and Jav										
			bpages to achieve h		arch engine.								
			ntent Management										
			Course MTech/CS										
COs	PEO1	PEO2	PEO3	PEO4	PEO5								
CO1	1	1	3	3	3								
CO2	2	2	3	3	3								
CO3	3	3 3 3 3											
CO4	3	3 3 3 3											
CO5	3	3 3 3 3											
CO6	3	3	3	3	3								



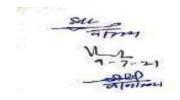

Average	2.5	2.5 2.5				3			3		3		
	CO-	PO Map	ping M	atrix for	Cours	e MTech	/CSE/I	FT/2/C	CC7				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	-	-	-	-	1	3	
CO2	2	1	1	3	1	-	-	-	-	-	2	3	
CO3	3	1	1	3	3	-	-	-	-	-	3	3	
CO4	3	3	1	3	1	-	-	-	-	-	3	3	
CO5	3	1	1	3	3	-	-	-	-	-	3	3	
CO6	3	3	3	3	3	-	-	-	-	-	3	3	
Average	2.5	2	1.33	2.66	2	_	_	-	_	_	2.5	3	
	CO-F	CO-PSO Mapping Matrix for Course MTech/CSE/FT/2/CC7											
COs	PSO1 PSO2 PSO3 PSO4 PSO5												
CO1		3 1 - 3											
CO2		3 2 - 3								3			
CO3		3		3		3			-		3		
CO4		3		3		3			-		3		
CO5		3		3		3			-		3		
CO6		3		3		3			-		3		
Average		3		3		2.5			-		3		
]	MTech/0	CSE/FT		e Conte Advan	ent ced Web	Techn	ology					
Unit - I		KML rela	tionship	between		ГМL, cap L, SGML							
Unit – II		SQL Fu				aScript, Ses in tabl							
Unit – III		ation (SI		_	•	ed by sea riting pla	•	-	•		_		
Unit – IV	CMS: In CMS Te Hosting	chnolog	ies: Wor	dPress, I	Orupal,	Joomla, V	Website	e Creat	ion and	l mainte	enance,	Web	
	•		Т	ext/Refe	rence l	Books							
 Peter Smith, "Professional Website Performance", Wiley India Pvt. Ltd. Kogent Learning, "Web Technologies: HTML, JavaScript, PHP, Java, JSP, XML, AJAX - Black Book", Wiley India Pvt. Ltd.' J. C. Jackson, "Web Technologies", Pearson Education, 													

Reference Books 1. Steven Holzner, PHP: The Complete Reference, Tata McGraw Hill 2. DT Editorial Services, "HTML 5 Black Book", 2e, Wiley India, 2016. 3. S. Potts, "JAVA 2 Unleashed", 6e, Sams Publishing, 2002

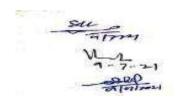


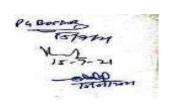


	MTech/CSE/FT/2/CC8: MATLAB Programming												
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment						
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance						
							Attendance						


Course Objectives: The objective of this course is to study, learn, and understand the major concepts of MATLAB Programming, namely, data types, data structure, matrices, data import/export, graphics, control structure, toolboxes, image and video processing.

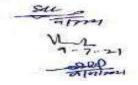
Course Outcomes	· ·											
CO1		define: features, commands, data types, hierarchy of operations, matrix, tools, functions										
		related to input/output, file handling and graphics, control structure and toolboxes used										
		in MATLAB.										
CO2		describe: history, origin, features, commands, data types, hierarchy of operations,										
		matrix, tools, functions related to file, function related to graphics, control structure and										
GO2	_	various toolboxes of MATLAB.										
CO3		use: commands, operations, tools, menus, toolbars, input/output functions, file handling,										
		functions related to graphics, 2D and 3D plotting, control structure, debugging, simulink and image & video processing toolboxes in MATLAB.										
CO4					tools different							
CO4	analyze: commands, data types, operations, control structure, matrix, tools, different functions related to graphics and file handling in given MATLAB program.											
CO5												
		determine: command, data type, tool, menu, control structure, debugging technique, function, feature or toolbox of MATLAB to use in given condition.										
CO6		create: basic or advanced program in MATLAB using different commands, 2D and 3D										
	plotting, funct	plotting, functions, tools, features, simulink, fuzzy logic, neural network and image &										
	video processi	ng toolbox of MATLA	AB.									
	CO-PEO Ma	pping Matrix for Co	urse MTech/CSE/	FT/2/CC8								
COs	PEO1	PEO2	PEO3	PEO4	PEO5							
CO1	1	1	3	3	3							
CO2	2	2	3	3	3							
CO3	3	3	3	3	3							
CO4	3	3	3	3	3							
CO5	3	3	3	3	3							
CO6	3	3	3	3	3							
Average	2.5	2.5	3	3	3							
	CO-PO Map	oping Matrix for Cou	rse MTech/CSE/I	FT/2/CC8								

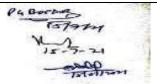

<u></u>												-								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12								
CO1	1	3	1	1	1	-	-	-	-	-	1	3								
CO2	2	1	1	3	1	-	-	-	-	-	2	3								
CO3	3	1	1	3	3	-	-	-	-	-	3	3								
CO4	3	3	1	3	1	-	-	-	-	-	3	3								
CO5	3	1	1	3	3	-	-	-	_	-	3	3								
CO6	3	3	3	3	3	-	-	-	-	-	3	3								
Average	2.5	2	1.33	2.67	2	-	-	-	-	-	2.5	3								
	CO-F	PSO Ma	pping I	Matrix f	for Cou	rse MT	ech/C	SE/FT/	2/CC8											
COs	F	PSO1 PSO2 PSO3 PSO4 PSO																		
CO1		3		3			1		-		3									
CO2		3		3			2		-		3									
CO3		3		3			3		-		3									
CO4		3		3			3		-		3									
CO5		3		3			3		-		-		-		-		-		3	
CO6		3		3			3		-		3									
Average		3		3			2.5		-		3									
Unit - I Unit - II	toolbar director constant and ass Vectors matrice matrice Polynos Input/o comma Introdu file, in audio/v an xls file creating	AB: Introperson AB: Introperso	coduction ting, types aving fables and statement atrices: ripts, mentering, attement level in data in audio a, exam- orking welle GUI	bes of fifiles, condexpressions described to the context of the co	ry, original ry, o	n, grow or debug variable operators ectors, eal matrices, struc- ts, oper- nteractications. rt, suppleading with spre- e, impo-	es and estate articles articles are articles are articles are are articles audio audio eadsheed arting §	develo seful co l expres rarchy o g data d arrays rays, ce outs, rea file form /video ets, write graphics	pment, pmmand ssions-c of opera in matr s, matri ll arrays ading/st mat, wo data fi sing to a s data, e	haracter tions, b rices, lin x manip s. oring d orking v from a an xls fi exportin	system, r set, da puilt-in-f me conti- pulation, ata files with aud file, ex le, readi g graphi	creating ta type, unction, nuation, special covideo sporting from cs data,								
Unit - III		AB gra		2d/3d pl	otting v	isualiza	ation,	2d plot	, multi	iple plo	t, style	options,								



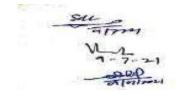
legends, subplots, specialized 2d plot- logarithmic, polar, area, bar, barh, hist, rose, pie, stairs, stem, compass. 3d plot - plot3, bar3, bar3h, pie3, stem 3, meshgrid, mesh, surf,

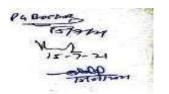
	contour, contour3. Control Structures: for, nested for, while, branch control structure- if, switch, break, continue, error, try-catch, debugging.
Unit - IV	Introduction to MATLAB toolboxes: Simulink, image & video processing toolbox, application level image processing techniques, mri image processing, fuzzy logic toolbox, neural network toolbox.
	Text/Reference Books
Text Books.	 Raj Kumar Bansal, Ashok Kumar Goel, ManojKumar,MATLAB and its Application in Engineering, Pearson Education. Ram N.Patel, Ankush Mittal, Programming in MATLAB, A Problem Solving Approach, Pearson Education. Duane Hanselman, Bruce L Littlefield, Mastering MATLAB 7, Prentice Hall. Amos Gilat, MATLAB: An Introduction with Application, Wiley Publisher.
Reference Books	 Jim Sizemore, John P.Mueller, MATLAB for Dummies, Wiley. Stephen J.Chapman, Matlab Programming for Engineers, Thomson-Engineering Publisher, CENGAGE Learning.

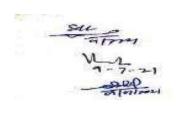


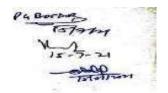


	MTech/CSE/FT/2/DSC1(i): Network Security													
Course Type	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment							
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods							
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/							
Theory					20 5 5		Attendance							

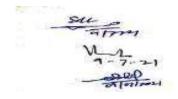

Course Objectives: To study fundamental concepts of Network Security, security attacks, cryptography, authentication, web security, system and email security.

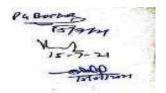

Course Outcomes At the end of this course, the student will be able to:												
		•										
CO1	data	define: computer security, security standards, cipher model, encryption techniques, data encryption standards, public-key cryptography, security at transport layer, SSL/TSL attacks, wireless security and IEEE 802.11i.										
CO2	expla adva	explain: computer concepts related with the security, symmetric techniques, advanced encryption standard, RSA, concept of digital signature, security protocols, wireless security measures and email security.										
CO3	illust	illustrate: features related with computer security, encryption techniques, data encryption standards, security at transport layer and wireless LAN security.										
CO4	mech	classify: information about security, its architecture, types of attacks, security mechanism, encryption standards, protocols at transport layer and wireless LAN eccurity.										
CO5	key 6	evaluate: security trends, security mechanisms, cipher model, RSA, Diffie-Hellman key exchange, transport layer security, SSL/TSL attacks, wireless security and IP security.										
CO-PEO Mapping Matrix for Course MTech/CSE/FT/2/DSC1(i)												
Cos	P	EO1		PEC)2		PEO3		PEO4	-	P	EO5
CO1		1		1			3		3			3
CO2		2		2			3		3			3
CO3		3		3			3		3			3
CO4		3		3			3		3			3
CO5		3		3			3		3			3
Average		2.4		2.4	ļ		3		3			3
CC)-PO M	Iappin	g Ma	trix for	Course	MTecl	ı/CSE/I	T/2/DS	C1(i)			
Cos	PO1	P02	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12



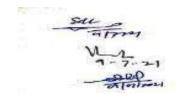

	1						i		i i				
CO1	1	3	1	1	1	2	-	-	-	-	1	3	
CO2	2	1	1	3	1	2	-	-	-	-	2	3	
CO3	3	1	1	3	3	2	-	-	-	-	3	3	
CO4	3	3	1	3	1	2	-	-	-	-	3	3	
CO5	3	1	1	3	3	2	-	-	-	-	3	3	
Average	Average 2.4 1.8 1 2.6 1.8 2 - - - - 2.6										2.4	3	
CO-I	CO-PSO Mapping Matrix for Course MTech/CSE/FT/2/DSC1(i)												
Cos		PSO1			PSO2		PSC)3	PSO	4	PS	SO5	
CO1 3 3 1 1 - 3													
CO2 3 3 2 - 3												3	
CO3 3 3 - 3											3		
CO4 3 3 3 - 3												3	
CO5 3 3 3 - 3												3	
Average 3 3 2.4 - 3											3		
Unit – I Computer Security Concepts – Introduction, security, security trends, components of information system, OSI security architecture, security attacks, goals for security, security mechanisms, security standards. Cipher model, cryptanalysis and brute-force attack, classical encryption techniques – symmetric techniques – substitution techniques, transposition techniques, rotor machines, steganography.												ecurity,	
 	advan Public	ced enc -key cı	ryptio ryptog	n stand raphy -	ard – str – princi	ructur ples,	e and exp	ansion tons	encryptic functions requiren	•			
Unit – III Security at Transport Layer, web security considerations, Transport Layer Security, TLS record protocol, change cipher spec protocol, alert protocol, handshake protocol, heart-beat protocol; SSL/TSL attacks; HTTPS; Secure shell; user authentication protocol, connection protocol.											rotocol,		
	Unit – IV Wireless Security, wireless security measures, mobile device security - threats and strategy. Wireless LAN security, IEEE 802.11i - services, operation and phases. Email security, S/MIME, PGP, overview of IP security.											eats and	
1			T	ext/Ref	erence	Book	S						
Text Books	1. W	/illiam	Stallir	igs, Cry	ptograp	hy A	nd Netwo	ork Secu	rity Princ	ciples	And P	ractice,	

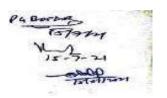
	2.	Pearson Education Forouzan, Mukhopadhyay, Cryptography & Network Security, McGraw Hill
Reference Book		AtulKahate, Cryptography and Network Security, TMH Godbole, Information Systems Security, Wiley India Mark Stamp, Information Security Principles and Practice, Willy India

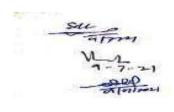



	Mtech/CSE/FT/2/DSC1(ii):Advanced Computer Networks												
Course Contact			Delivery	Maximu	m Marks	Exam	Assessment						
Type	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods						
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance						

Course Objectives: The objective of this course is to get the students familiar with various networking models, different IP addressing, wireless LANS and latest network technologies.

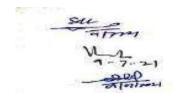

Course Outcomes	At the end of this course, the student will be able to:
CO1	define:computer networking includingnetwork models, media for transmission,IEEE standards, logical addressing, routing protocols, domain name system, world wide web, HTTP, FTP and wireless LANs.
CO2	explain: various concepts of computer networking including network models, media for transmission along with the standards followed, logical addressing, routing protocols, domain name system and wireless LANS.
CO3	apply: techniques learnt here in the design and evaluation of computer networks and decide which network models, routing protocols, logical addressing, transmission media or wireless LAN will suit a particular situation.
CO4	categorize: computer networks, network models, routing protocols, logical addressing, transmission media and wireless LANs.
CO5	choose: IEEE standards, unicast and multicast routing protocols, logical addressing, transmission media and wireless LANs.

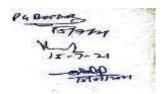

CO	CO-PEO Mapping Matrix for Course MTech/CSE/FT/2/DSC1(ii)												
Cos	PEO1	PEC)2	PEO3	;	PEO ₂	4	PEG	O5				
CO1	1	1		3		3		3	;				
CO2	2	2		3		3		3	}				
CO3	3	3		3		3		3	}				
CO4	3	3		3		3		3	}				
CO5	3	3		3		3		3	}				
Average	2.4	2.4		3		3		3	}				
C	O-PO Mapping I	Matrix for	Course	e MTech/C	SE/FT/	2/DSC1(i	i)						
Cos	PO1 PO2 PC	93 PO4	PO5	PO6 PO	7 PO8	PO9	PO10	PO11	PO12				



CO1	1	3	1	1	1	_	_	-	_	-	1	3
CO2	2	1	1	3	1	-	-	-	-	-	2	3
CO3	3	1	1	3	3	-	-	_	-	-	- 3	
CO4	3	3	1	3	1	-	-	_	_	_	3	3
CO5	3	1	1	3	3	-	-	_	-	_	3	3
Average	2.4	1.8	1	2.6	1.8	-	-	_	-	-	2.4	3
	CO-PSO	Mappi	ing M	atrix fo	r Cours	е МТ	ch/CS	SE/FT/2	2/DSC1(ii)	I	-
Cos PSO1 PSO2 PSO3 PSO4 PSO5												
CO1 3 3 1 - 3												
CO2		3			3		2		-		3	
CO3		3 3 - 3										
CO4	3 3 - 3											
CO5	3 3 - 3											
Average	3 3 2.4 - 3											
	MTooh	/CCE/	ET/2/	Cou DSC1(ii	rse Con		Comp	utor No	tworks			
Unit - I Unit - II	Transm Connec Etherne Logical	ission ting L. t: IEE Addre	Media ANs: (E Stan essing:	: Guided Connecti	d Media ing Dev tandard ddresses	, Unguices, B Ethern s, IPv6	iided Nackbo net, Fa Addre	Media. ne Nety st Ether esses.	rnet, Gig		ernet.	
Unit - III	Wireles	s LAN s Net ks. IP	ls: IEE work		1, Blue	tooth		I, PAN	, Sensor	r Netwo	orks and	l Adhoc
Unit - IV												e
				Text/Re	eference	Book	s					
Text Books	 Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems Approach, 4e, Morgan Kaufmann, 2007. Jean Walrand and PravinVaraiya, High Performance Communication Networks, 2e, Morgan Kauffman, 1999. Markus Hoffmann and Leland R. Beaumont, Content Networking: Architecture, Protocols, and Practice, Morgan Kauffman, 2005. 											

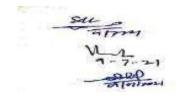
Reference Books	1. Behrouz A. Forouzan, Data Communications and Networking, 4 Hill, 2006.	4e, Tata McGraw
-----------------	---	-----------------

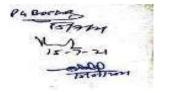




Mtech/CSE/FT/2/DSC1(iii): Wireless Networks												
Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment						
Credit	Hours/ Week	Mode	External	Internal	Duration	Methods						
04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance						
_	Credit	Course Contact Credit Hours/ Week	Course Contact Delivery Credit Hours/ Mode Week	Course Contact Delivery Maximu Credit Hours/ Week Mode External	Course Credit Contact Hours/ Week Delivery Mode Delivery Mode Maximum Marks 04 04 Lecture 70 30	Course Credit Contact Hours/ Week Delivery Mode Maximum Marks Exam Duration 04 04 Lecture 70 30 3 Hours						

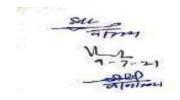
Course Objectives: To study fundamental concepts in wireless network, various LAN standards, IP and IPV6 Layer, Transmission protocols and WAN standards.

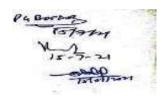

						_						
Course Outcomes	At the end of	this course, the stu	ident will be able	to:		At the e						
CO1		lefine: wireless LAN, architecture, mobile network layer, mobile transport layer and wireless wide area network.										
CO2	mobile ad-ho	escribe: WLAN technologies, IEEE 802.11 types, IEEE 802.16, Bluetooth, IPV6, nobile ad-hoc network, TCP enhancements for wireless network, UTMS, 3G-MSC, G-SGSN, 3G-GGSN, applications of 4G, features and challenges of 5G.										
CO3	architecture,	mobile IP, mobi	le ad-hoc netwo	nysical layer, Mac lork, mobile transports, features and ch	ort layer, TCP	Transm						
CO4		s, TCP improver		IEEE 802.16, IPVore network archite		Wireles						
CO5	transport laye	compare: different Wireless LAN technologies, mobile network layer, mobile transport layer, Mobile IP, mobile ad-hoc networks, protocols, TCP improvements and wireless WAN types.										
C	O-PEO Mapp	ing Matrix for Co	urse MTech/CSI	E/FT/2/DSC1(iii)								
Cos	PEO1	PEO2	PEO3	PEO4	PEO5							
CO1	1	1	3	3	3							
CO2	2	2	3	3	3							
CO3	3	3	3	3	3							
CO4	3	3	3	3	3							
CO5	3	3	3	3	3							
Average	2.4	2.4	3	3	3							
(CO-PO Mappi	ng Matrix for Cou	irse MTech/CSE	/FT/2/DSC1(iii)								



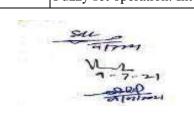
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12					
CO1	1	3	1	1	1	_	-	-	-	-	1	3					
CO2	2	1	1	3	1	_	-	-	-	-	2	3					
CO3	3	1	1	3	3	-	-	-	-	-	3	3					
CO4	3	3	1	3	1	-	-	-	-	-	3						
CO5	3	1	1	3	3	-	-	-	-	-	3	3					
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3					
	CO-PS	O Map	ping M	latrix fo	r Course	MTech	/CSE/I	T/2/DS(C1(iii)								
Cos	P	SO1	P	PSO2		PSO3		PSC)4		PS	SO5					
CO1		3		3		1				3							
CO2		3		3		2		-			3						
CO3		3		3		3		-				3					
CO4		3		3		-					3						
CO5		3		3		3		3		-				3			
Average		3		3		2.4		-				3					
	N	/ITech/	CSE/F		e Conter C1(iii): V		Netwoi	rks									
Unit – I Unit - II	spectru layer, a Archite IEEE80 Mobile tunnelin initiation	m -IEE 802.11t ceture, 02.16-W Netwong and on prote	E802.1 b, 802. Radio VIMAX rk Laye encaps ocol -	1: System 11a - H Layer, K: Physic er: Introduction, mobile a	m archite Hiper LA Basebar al layer, duction - IPV6- N ad-hoc no	ecture, pr N: WA nd layer MAC, S Mobile	rotocol TM, E T, Link pectrun IP: IP	architects RAN, H manag n allocati packet de n the inte	ure, ph liperLA er Pro on for elivery, ernet-	ysical l AN2 – otocol, WIMA , Agent Mobile	Blue secu X. t disc	MAC etooth: urity -					
Unit - III Unit - IV	vector, Dynamic source routing. Unit - III Mobile Transport Layer :TCP enhancements for wireless protocols - Traditional TCP: Congestion control, fast retransmit/fast recovery, Implications of mobility - Classical TCP improvements: Indirect TCP, Snooping TCP, Mobile TCP, Time out freezing, Selective retransmission, Transaction oriented TCP - TCP over 3G wireless networks.																
	GMSC (HSDP	/SMS-I A)- LT	WMSC E netv	C, Firew work arc	all, DNS	S/DHCP and pr	-High otocol,	speed I features ares and o	Downling and o	nk pac challen	cket	access					

Text/Reference Books

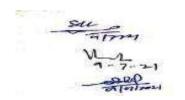


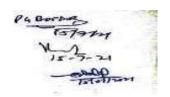

Text Books	 Jochen Schiller, "Mobile Communications", 2e, Pearson Education 2012. Vijay Garg, "Wireless Communications and Networking", 1e, Elsevier, 2007.
Reference Books	 William Stallings, Wireless Communications and Networks, Pearson/Prentice Hall of India. Erik Dahlman, Stefan Parkvall, Johan Skold and Per Beming, "3G Evolution HSPA and LTE for Mobile Broadband", 2e, Academic Press, 2008. Anurag Kumar, D. Manjunath, Joy Kuri, "Wireless Networking", 1e, Elsevier 2011. Simon Haykin, Michael Moher, David Koilpillai, "Modern Wireless Communications", 1e, Pearson Education, 2013.

	MTech/CSE/FT/2/DSC2(i): Soft Computing																							
Course Type	Contact Hours/	Maximu	Maximum Marks				Assessment																	
	Credit	Week	Mode	External Internal		ernal Internal			Internal		nternal		Internal		Duration	Methods								
Optional Theory	04	04	Lecture	70	30			3 Hours	TEE/MTE/ Assignment/															
					20	5	5		Attendance															

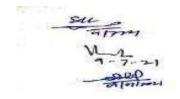

Course Objectives: The objective of this course is to cover fundamental soft computing concepts with an exposure to ANN, fuzzy Logic, optimization techniques using Genetic Algorithm (GA).

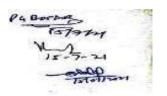
Course Outcomes	By the end of this of	course, the student v	will be able to:									
CO1	recognize the concepts of: soft computing and hard computing, simple genetic algorithm, fuzzy set, neuron, neural network and activation function.											
CO2		anderstand and describe: the role of genetic algorithm operators, representation of fuzzy set and its operation, types of neural network and activation function including their prosend cons.										
CO3		ise: algorithm i.e. genetic algorithm, fuzzy logic, ANN and their constituents for solving optimization problem.										
CO4	activation function	differentiate: soft computing and hard computing, operators of genetic algorithm and activation functions of ANN. analyze: fuzzification and defuzzification.										
CO5	compare: soft cor different activation		computing, operat	ors of genetic alg	orithm and							
C	O-PEO Mapping M	Iatrix for Course	MTech/CSE/FT/2/	DSC2(i)								
Cos	PEO1	PEO2	PEO3	PEO4	PEO5							
CO1	1	1 1 3 3 3										
CO2	2	2	3	3	3							




CO3		3		3			3			3			3
CO4		3		3			3			3			3
CO5		3		3	3			3				3	
Average		2.4		2.4	ļ		3			3			3
	CO-PO N	Ларріі	ng Matı	rix for C	Course N	Tech/(CSE/F	Γ/2/D	SC2(i)				
Cos	P01	PO1 PO2 PO3 PO4 PO6 PO6 PO6 PO6 PO9 PO10 PO11 PO11									PO12		
CO1	1	3	1	1	1	-	-	-	-	-	1		3
CO2	2	1	1	3	1	-	_	-	-	-	2		3
CO3	3	1	1	3	3	-	-	-	-	-	3		3
CO4	3	3	1	3	1	-	-	-	-	-	3		3
CO5	3	1	1	3	3	-	-	-	-	-	3		3
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.	4	3
	CO-PSO Mapping Matrix for Course MTech/CSE/FT/2/DSC2(i)												
COs	PS	SO1		PSO	2	I	PSO3		P	SO4		PS	O5
CO1		3		3			1			-		(3
CO2		3		3			2			-		(3
CO3		3		3			3			-			3
CO4		3		3			3			-		3	3
CO5		3		3			3			-		3	3
Average		3		3			2.4			-		(3
Unit - I I	ntroductio	n to So		ech/CSI		OSC2(i)	t Comr	nutino	differ	encehe	etweer	sof	t and
h	ard compo	ıting, b	rief des	cription	s of diffe	erent co	mpone	nts of					
S C O N	- II Genetic Algorithm: Introduction to genetic algorithm, simple genetic algorithm, its representation. Selection: Roulette wheel selection, random, rank, tournament, Boltzmann selection. Crossover and its types: Single point crossover, two point crossover, multipoint crossover, ordered crossover, uniform crossover, crossover for real-valued representation. Mutation and its types: Flipping, Interchanging, reversing, replacement, mutation for real-valued representation, crossover rate, mutation rate and convergence criteria.												
fı	uzzy Logi uzzy set, b uzzy set o	asic pr	operties	s of fuzz	y sets.	_							

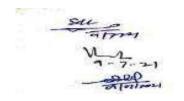
	sets, important terminologies in fuzzy set operations, properties of fuzzy sets, fuzzy arithmetic. Fuzzy Composition: Max-Min composition, max-star composition, max-product composition, max-average composition. fuzzification and de-fuzzification.
Unit - IV	Artificial Neural Network: Basic of neural network: neuron, artificial neuron, neural network, artificial neural network, perceptron, feed forward, multilayer perceptron neural network, advantage and disadvantage of ANNs. Activation function and types of activation function. perceptron network, XOR problem.
	Text/Reference Books
Text Books	 David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley. ZbigniewMichalewicz, Genetic Algorithms +Data Structures = Evolution Programs, SpringerVerlag.
Reference Books	 M. Mitchell, An Introduction to Genetic Algorithms, Prentice-Hall. S. Rajasekaran& G. A. VijayalakshmiPai, Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & Applications, PHI. S. N. Sivanandam& S. N. Deepa, Principles of Soft Computing, Wiley - India. Simon O. Haykin, Neural Networks, A Comprehensive Foundation, PHI.

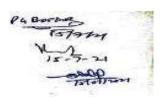




	MTech/CSE/FT/2/DSC2(ii):Machine Learning																
Course	Exam	Assessment															
Type	Credit	Hours/ Week	Mode	External	Int	nternal		Internal		Internal		Internal		Internal		Duration	Methods
Optional Theory	04	04	Lecture	70	30			3 Hours	TEE/MTE/ Assignment/								
					20	5	5		Attendance								

Course Objectives: The objective of this course is to enable student to perform experiments in Machine Learning using real-world data.

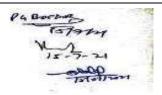

using fear-world data.													
Course Outcomes	,												
CO1		define the terms of machine learning: data pre-processing, classification, regression											
		and neurons.											
CO2		explain the types of: data, data pre-processing regression, classification ,unsupervised											
		earning. liscuss:architecture of ANN.											
CO3						using	data r	re proc	essing	and n	nodel se	election	
		oply:training and testing data using data pre processing and model selection echniques and classification, regression, clustering techniques according to their											
		roblem.											
CO4							ng, mod	lel select	tion, re	gressio	n, classit	fication	
		assify techniques of: data pre-processing, model selection, regression, classification d unsupervised learning techniques.											
CO5	comp	ompare techniques of: data pre-processing, supervised and unsupervised learning.											
CO)-PEO	PEO Mapping Matrix for Course MTech/CSE/FT/2/DSC2(ii)											
Cos	Pl	PEO1 PEO2 PEO3 PEO4 PEO5											
CO1		1		1			3		3		3		
CO2		2		2			3		3		3		
CO3		3		3			3		3		3		
CO4		3		3			3	3			3		
CO5		3		3			3 3				3		
Average	2	2.4		2.4			3		3		3		
C	O-PO	Mappi	ng Mat	rix for	Course	е МТес	ch/CSE	/FT/2/D	SC2(ii)			
Cos	PO1	PO2	PO3	PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12								PO12	
CO1	1	3	1	1	1	-	-	-	-	-	1	3	
CO2	2	1	1	3	1	-	-	-	-	-	2	3	



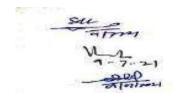
CO3	3	1	1	3	3	_	-	_	_	_	3	3
CO4	3	3	1 3 1		_			_	-	3	3	
CO5	3	1	1 3 3 -		_	-	-	_	-	3	3	
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3
C	O-PSO	Mapp	ing Ma	trix fo	r Cou	rse MTe	ch/CSE	C/FT/2/I	OSC2(i	i)		
Cos	PS	O1	PSO2 PSO3 PSO4					PSO5				
CO1	3	3	3			1			-		3	
CO2	3	3		3		2			-		3	
CO3	3	3		3		3			-		3	
CO4	3	3		3		3		-			3	
CO5	3	3	3			3		-			3	
Average	3	3	3			2.4			-		3	
	ı	-										

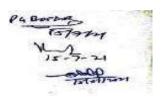
Course Content MTech/CSE/FT/2/DSC2(ii):Machine Learning										
Unit – I	Basics of Machine Learning; Introduction to Artificial Intelligence and Machine Learning, Types of Machine Learning and its comparisons, Applications of Machine Learning, Issues in Machine Learning.									
Unit – II	Preparing to Model: Introduction, Machine Learning Activities, Types of Data in Machine Learning, Exploring structure of data, Data Pre-processing(Dimension Reduction and Feature subset selection), Model Selection.									
Unit – III	Supervised Learning: Introduction, Classification (Introduction, classification model, learning steps, Common classification algorithm), Regression (Linear Regression, Multivariable Regression, Logistic Regression).									
Unit – IV	Unsupervised Learning: Introduction and its applications, Techniques in Unsupervised Learning (Clustering, K-Means). Neural Network: Introduction, Architecture of Artificial Neural Network.									
	Text/Reference Books									
Text Books	 Tom M. Mitchell, Machine Learning, McGraw-Hill Education (India) Private Limited. EthemAlpaydin, Introduction to Machine Learning - Adaptive Computation and Machine Learning, The MIT Press. 									
Reference Book	 Stephen Marsland, Machine Learning: An Algorithmic Perspective, CRC Press. Peter Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data, Cambridge University Press. Peter Harrington, Machine Learning in Action, Manning ShaiShalevShwartz and Shai Ben David, Understanding Machine Learning From Theory to Algorithms, Cambridge University Press 									



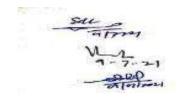


MTech/CSE/FT/2/DSC2(iii)Artificial Intelligence												
Course	Course	Contact	Delivery	Maximu	ım Ma	ırks	Exam	Assessment				
Type	Credit	Hours/ Week	Mode	External	Int	erna	.1	Duration	Methods			
Optional Theory	04	04	Lecture	70	70 30			3 Hours	TEE/MTE/ Assignment/			
Theory					20	5	5		Attendance			


Course Objectives: Aim of this course is to familiarize the students with various techniques of artificial intelligence like predicate calculus, production rules; expert systems.

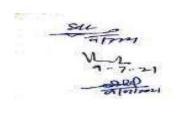

intenigence tike predicate calculus, production rules, expert systems.														
Course Outcomes	At the end of this course, the student will be able to:													
CO1	define: artificial intelligence terms, types of search strategy, production system,													
902	knowledge representation, learning techniques and genetic algorithm terminologies.													
CO2	explain: the types and properties of search algorithm, predicate calculus, knowledge representation and explore the theories that demonstrate intelligent behavior													
GO2	including intelligent editor, learning by induction and dealing with uncertainty.													
CO3	use: search strategy, genetic algorithm, fuzzy logic and learning technique.													
CO4	classify types of: search strategy, production system, learning, operator of genetic													
COF	algorithm, knowledge representation and approaches that deals with uncertainty.													
CO5	compare and select types of: search strategy, production system, learning, operator of													
	genetic algorithm, knowledge representation and approaches that deals with uncertainty.													
•														
CO-PEO Mapping Matrix for Course MTech/CSE/FT/2/DSC2(iii)														
Cos	PE	EO1		PEO2			PEO3			PEO4			PEO5	
CO1		1	1			3			3			3		
CO2		2	2				3			3			3	
CO3		3	3				3			3			3	
CO4		3	3			3			3			3		
CO5		3	3			3			3			3		
Average	2	4		2.4		3 3						3		
CO	-PO M	Iappi i	ng Mati	rix for	Course	е МТе	ch/CSE	C/ F T	Γ/ 2 /D	SC2(ii	i)			
Cos														
	1	2	33	4	2	90	72	8		60	10	=	1	12
	P01	PO2	PO3	P04	PO5	P06	PO7	PO8		P09	PO10	PO11)	PO12
CO1	1	3	1	1	1	_	_				_ _		1	3
CO2	2 1 1 3 1				-	-		2	3					

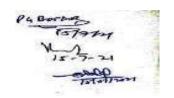
_														
CO3	3	1	1	3	3	-	-	_	_	-	3	3		
CO4	3	3	1	3	1	-	-	-	-	-	3	3		
CO5	3	1	1	3	3	-	-	-	-	-	3	3		
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3		
CO-PSO Mapping Matrix for Course MTech/CSE/FT/2/DSC2(iii)														
Cos	PSC	PSO1 PSO2 PSO3 PSO4 PSO5												
CO1	3										3			
CO2	3	3 3					2		-		3			
CO3	3	3 3				3			-		3			
CO4	3	3 3				3			-		3			
CO5	3			3			3		-		3			
Average	3			3		2	2.4		-		3			
	•							•						
Course Content MTech/CSE/FT/2/DSC2:Artificial Intelligence														
The predicate calculus: Syntax and semantic for propositional logic and FOPL. Clausal form, inference rules, resolution and unification. Knowledge representation: Network representation-Associative network & conceptual graphs, Structured representation- Frames & Scripts. Unit – II Search strategies: Strategies for state space search-data driven and goal driven.														
search strategies: Strategies for state space search-data driven and goal driven search; Search algorithms- uninformed search (depth first, breadth first, depth first with iterative deepening) and informed search (Hill climbing, best first, A* algorithm, mini-max etc.), computational complexity, Properties of search algorithms - Admissibility, Monotonicity, Optimality, Dominance.											, depth			
Unit – III Production system: Types of production system-commutative and non-commutative production systems, Decomposable and non-decomposable production systems. Control of search in production systems. Rule based expert systems: Architecture, development, managing uncertainty in expert systems - Bayesian probability theory, Stanford certainty factor algebra Nonmonotonic logic and reasoning with beliefs, Fuzzy logic, Dempster/Shaffer and other approaches to uncertainty														
Unit – IV	Unit – IV Knowledge acquisition: Types of learning, learning by automata, intelligent editors learning by induction. Genetic algorithms: Problem representation, Encoding Schemes, Operators: Selection Crossover, Mutation, Replacement etc.													
	<u> </u>		7	Γext/R	eferenc	e Bool	ks							
Text Books 1. George F. Luger, William A. Stubblefield, Artificial Intelligence, The Benjamin/Cummings Publishing Company, Inc. 2. Dan W. Patterson, Introduction to Artificial Intelligence and Expert system, PHI. 3. Wills J. Nilsson, Principles of Artificial Intelligence, Narosa Publishing House.										ı, PHI.				



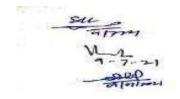
	4.	ackson Peter, Introduction to Expert Sytems, 3e, Addison Wesley -2000.								
Reference Books		Ben Coppin, Artificial Intelligence Illuminated, Narosa Publishing House. Eugene Charniak, Drew McDermott, Introduction to Artificial Intelligence, Pearson Education.								

MTech/CSE/I	MTech/CSE/FT/2/CC9: Software Lab based on MTech/CSE/FT/2/CC7(Advanced Web Technology)											
Course Type	Course			Maxim	um Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Practical	02	04	Lab Work	50	-	3 Hours	TEE/					
							Practical File					

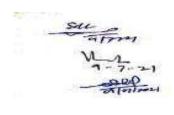

Course Objectives: The objective of this course is to get the students hands on practice with programming constructs of HTML, Java Scripts, Search Engines and CMS.

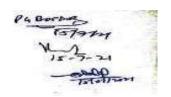

Course Outcomes	At the end of	this course, the stud	lent will be able to:							
CO1		-	ΓML, CSS, XHTM		JavaScript, PHP,					
	MySQL, searc	ch engine and conte	nt management sys	tems.						
CO2	describe: HTN	lescribe: HTML common tags, HTML5 capabilities and use of XML, JavaScript concept								
	with PHP & N	MySQL, search engi-	ne techniques and o	ptimize search resu	ılts.					
CO3	perform: HTM	ML tags with XM	L, JavaScript with	PHP and MySQL	queries,optimize					
	search engine	e result using SEC	techniques, Web	hosting and differen	ent type of CMS					
	technologies.	technologies.								
CO4	illustrate: rela	illustrate: relationship of HTML with XML, building query on tables and forms, improve								
	ranking using	ranking using search engine optimization techniques, analyze different CMS like								
	Wordpress, Jo	Wordpress, Joomla and Drupal with help of their features.								
CO5	compare: HTM	compare: HTML with HTML5, relationship of HTML, SGML and XML.								
	determine: cli	ent side or server si	de JavaScript.							
	evaluate: quer	ies on table and for	ms using MySQL.							
	choose: effect	ive plan to achieve	higher ranking in se	earch results.						
CO6	design: webpa	ages using HTML,	CSS,XML and Java	aScript, generate va	arious query using					
	MySQL in we	bpages, modify wel	pages to achieve h	igher ranking in sea	arch engine.					
	create: blog or	websites using Co	ntent Management	System.						
	CO-PEO Ma	apping Matrix for	Course MTech/CS	SE/FT/2/CC9						
Cos	PEO1	PEO2	PEO3	PEO4	PEO5					
CO1	1	1 1 3 3 3								
CO2	2	2	3	3	3					

CO3	3			3	3				3		3	
CO4	3			3		3			3		3	
CO5	3		•	3		3			3	j	3	
CO6	3		•	3		3			3			
Average	2.5		2	.5		3			3		3	
	CO-	PO Maj	ping Ma	atrix for	Cours	e MTech	/CSE/	FT/2/C	CC9	'		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	-	-	-	1	3
CO2	2	1	1	3	1	-	-	-	-	-	2	3
CO3	3	1	1	3	3	-	-	-	-	-	3	3
CO4	3	3	1	3	1	-	-	-	-	-	3	3
CO5	3	1	1	3	3	3		-	-	-	3	3
CO6	3	3	3	3	3	-	-	-	-	-	3	3
Average	2.5	2	1.33	2.66	2	-	-	-	-	-	2.5	3
	CO-F	PSO Ma	pping M	latrix fo	r Cour	se MTecl	h/CSE	/FT/2/	CC9			
COs	PS	SO1		PSO2		PSO3	3	I	PSO4		PSO	5
CO1		3		3		1		-			3	
CO2		3		3		2			-		3	
CO3		3		3		3			-		3	
CO4		3		3		3			-		3	
CO5		3		3		3			3			
CO6		3		3		3		-			3	
Average		3		3		2.5			-		3	

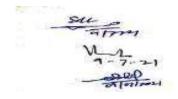


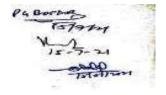
MTech/CSE/I	MTech/CSE/FT/2/CC10: Software Lab based on MTech/CSE/FT/2/CC8 (MATLAB Programming)											
Course Type	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment Methods					
	Credit	Hours/Week	Mode	External	Internal	Duration						
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File					


Course Objectives: The objective of this course is to get the students hands on practice with programming constructs of MATLAB and their usage. This course is based on MTech/CSE/FT/2/CC8: MATLAB Programming.


	r .											
Course Outcomes		end of										
CO1											tools, fu	
		•	ut/outpu	it, file h	andling	and gra	aphics,	contro	ol structu	re and	toolboxe	es used
CO2		TLAB.	Offi Offi	igin fo	atures	commo	nds -	lata +	nee hie	rarah.	of oper	rations
											or oper ol structu	
		s, tools, is toolbo				-, 1411011			2. apines	., cond	or structi	v unu
CO3		use: commands, operations, tools, menus, toolbars, input/output functions, file handling,										
	functi	functions related to graphics, 2D and 3D plotting, control structure, debugging,										
		ink and			•							
CO4				• .							tools, di	ifferent
005									ATLAB			
CO5		determine: command, data type, tool, menu, control structure, debugging technique,										
CO6		function, feature or toolbox of MATLAB to use in given condition. create: basic or advanced program in MATLAB using different commands, 2D and 3D										
		plotting, functions, tools, features, simulink, fuzzy logic, neural network and image &										
video processing toolbox of MATLAB.												
	CO-PEO Mapping Matrix for Course MTech/CSE/FT/2/CC10											
Cos	PE	EO1		PEO2		P	EO3		PEO4	ļ	PEC)5
CO1		1		1			3		3		3	
CO2		2		2			3		3		3	
CO3		3		3		·	3		3		3	
CO4		3		3		·	3		3		3	
CO5		3		3			3		3		3	
CO6		3		3			3		3		3	
Average	2	5		2.5		·	3		3		3	
	CO-I	PO Map	ping M	atrix fo	r Cour	se MTe	ch/CS	E/FT/	2/CC10			
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1 1 1			_	_		-	1	3
CO2	2	1	1	3	1	_		-	_		2	3

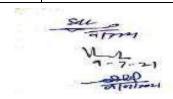
CO3	3	1	1	3	3	-	-	_	-	-	3	3
CO4	3	3	1	3	1	-	-	-	-	_	3	3
CO5	3	1	1	3	3	-	-	-	-	-	3	3
CO6	3	3	3	3	3	-	_	-	-	-	3	3
Average	2.5	2	1.33	2.67	2	-	-	-	-	-	2.5	3
	CO-P	0-PSO Mapping Matrix for Course MTech/CSE/FT/2/CC10										
Cos	P	SO1		PSO2	PSO3			PSO4		PSO5		
CO1		3	Ì	3			1		-		3	
CO2		3		3		2			-		3	
CO3		3		3		3			-		3	
CO4		3		3	3			-		3		
CO5		3		3			3		-		3	
CO6		3		3			3		-		3	
Average		3		3		-	2.5		-		3	

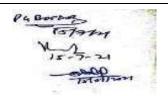




	MTech/CSE/FT/3/CC11: Python Programming											
Course Type	Course	Contact			Exam	Assessment						
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/					
Theory					20 5 5		Attendance					

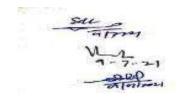
Course Objectives: The objectives of this course is to get the students familiar with basic concepts of Python programming, decision making and functions, file handling and object oriented programming concepts, database programming and to implement machine learning concepts.

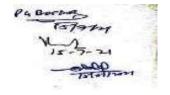

Course Outcomes	At the end of this course, the student will be able to:									
CO1	define: installations, working, structures, control statements, operators, lists ,object oriented programming concepts, python libraries.									
CO2	explain: conditional & control statements, strings, OOPs, file handling concepts, libraries and packages of python programming.									
CO3		use: various python libraries such as numpy, matplotlib, pandas . apply: python programming constructs to solve real world problems.								
CO4	categorize: data types python libraries.	, dictionaries, c	onditional & contr	rol statements,	functions,					
CO5	compare: data types, dictionaries, conditional & control statements, functions, python libraries.									
CO6	CO6 design: basic and advanced applications in python.									
	CO-PEO Mapping Mat	trix for Course N	//Tech/CSE/FT/3/C	CC11						
Cos	PEO1	PEO2	PEO3	PEO4	PEO5					
CO1	1	1	3	3	3					
CO2	2	2	3	3	3					
CO3	3	3	3	3	3					
CO4	3	3	3	3	3					
CO5	3	3	3	3	3					
CO6	3 3 3 3									
Average 2.5 2.5 3 3 3										
	CO-PO Mapping Matr	rix for Course M	Tech/CSE/FT/3/C	C11						
Cos	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12									



,

, լ													
CO1		1	3	1	1	1	-	_	-	-	_	1	3
CO2		2	1	1	3	1	-	-	-	-	-	2	3
CO3		3	1	1	3	3	-	-	-	-			3
CO4		3	3	1	3	1	-	-	-	-	-	3	3
CO5		3	1	1	3	3	-	-	-	-	-	3	3
CO6		3	3	3	3	3	-	-	-	-	-	3	3
Average		2.5	2	1.3	2.6	2	-	-	-	-	-	2.5	3
	(CO-PS	О Марј	ping M	atrix fo	r Course	МТес	ch/CSE/	FT/3/0	CC11			
Cos	Cos PSO1 PSO2 PSO3 PSO4 PSO5												
CO1			3		İ	3		1			-		3
CO2			3			3		2			-		3
CO3			3			3		3			-		3
CO4			3			3		3			-		3
CO5			3			3 3					-		3
CO6			3			3		3			-		3
Average			3			3		2.5			-	3	
	Ī.				Г/3/СС	se Conten	on Pro			a - D - 1			~ .
Unit – I	flow basic data	, Inter	preter sl ators, D Python	hell, To Declarin	kens, Iog and u	thon, Usi dentifiers, using Num be of a V	, Resei neric d	ved key lata type	words s: int,	, Litera float,	als, Vari complex	iables, k, using	Python g string
Unit – II	Conditional blocks using if, else and elif, For loops in python, While loops, Continue, Break and Else, organizing python codes using functions, Modules: Creating Module, using Modules and Built-in Modules. Packages: Package Types, Importing Package, Viewing Package Content and Documentation. Powerful Lambda Function in python, Programming: Using Functions, Modules and Packages.												
Unit – III Object Oriented Programming: Concept of Class, Object and Instances, Constructor, Class Attributes and Destructors, Built-in Class Attributes, Inheritance, Method Overriding, Data Encapsulation, Overloading Operators, Data Hiding, Exception Handling, Programming using Oops concepts. File Handling: Creating, Opening, Closing, Writing & Reading File Content, Deleting a File. Programming using file operations.													
Unit – IV													

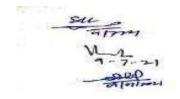


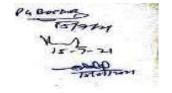

	Python Matplotlib: Line, Grid, Scatter, Bars, Histograms and Pie Charts.
	Text/Reference Books
Text Books	 Chun, J Wesley, Core Python Programming, 2e, Pearson, 2007. E. Balagurusamy, Introduction to Computing and Problem Solving Using Python, McGraw Hill Education, 2016.
Reference Books	 Barry and Paul, Head First Python, 2e, O Reilly, 2010. Lutz and Mark, Learning Python, 4e, O Reilly, 2009

	MTech/CSE/FT/3/CC12:Research Methodology												
Course	Course	Contact	Delivery		Exam	Assessment							
Type	Credit	Hours/ Week	Mode	External	Internal			Duration	Methods				
Optional Theory	04	04	Lecture	70		30		3 Hours	TEE/MTE/ Assignment/				
Theory					20	5	5		Attendance				

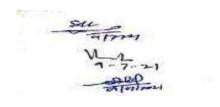
Course Objectives: The objective of this course is to get the students familiar with different aspects of research methodology, namely, research design, collection and analysis of data, and interpretation of results.

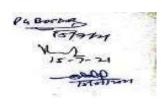
Course Outcomes	At the end of this course, the student will be able to:
CO1	define: objectives, hypothesis, interpretation, data analysis, data collection, research design and method, interpretation, data analysis, sampling.
CO2	describe: objectives, hypothesis, interpretation, data analysis, data collection, research design and method, interpretation, data analysis, sampling.
CO3	Illustrate: measurement. data collection, processing, sampling, analysis and its strategies, reports.
CO4	categorize: research, sampling methods, data collection techniques, reports ,and data processing strategies. perform: data analysis.
CO5	compare: sampling methods, data collection techniques, reports and data processing strategies.
CO6	create: thesis, reports. design: research tool . interpret(drive): results.
(CO-PEO Mapping Matrix for Course MTech/CSE/FT/3/CC12



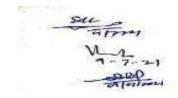

Cos	PF	EO1		PEO	2		PEO3		PEO4		PE	Ω5
CO1		1		1			3		3		3	
CO2		2		2			3		3		3	
CO3		3		3			3		3		3	
CO4		3	İ	3			3		3		3	
CO4				3								
		3		3			3		3		3	
CO6							3		3		3	
Average	1	5 	nin a M	2.5	en Con	 .maa M	_	CT:/TCT:/	3	,	3)
	O-PO	Map	ping M	atrix i	or Cou	irse M	Tecn/C	SE/FT/	5/CC12	<u>'</u>	1	
Cos		2)				,,				0	1	2
	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	P012
										Щ		Н
CO1	1	3	1	1	1	-	_	3	-	3	1	3
CO2	2	1	1	3	1	-	-	3	-	3	2	3
CO3	3	1	1	3	3	-	-	3	-	3	3	3
CO4	3	3	1	3	1	-	-	3	-	3	3	3
CO5	3	1	1	3	3	-	-	3	-	3	3	3
CO6	3	3	3	3	3	-	-	3	_	3	3	3
Average	2.5	2	1.3	2.6	2	-	-	3	-	3	2.5	3
C	O-PSC) Map	ping M	latrix	for Co	urse N	Tech/C	SE/FT/	3/CC1	2	·	'
Cos	PS	01	P	SO2		P	SO3		PSO4	1	PS	O5
CO1	3	3		3			1		3		3	3
CO2	3	3		3			2		3		3	3
CO3	3	3		3			3		3		3	3
CO4	3	3		3			3		3		3	3
CO5	3	3		3			3		3		3	3
CO6	3	3		3			3		3		3	
Average	3	3		3			2.5		3		3	3

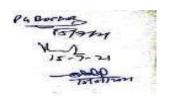
Course Content MTech/CSE/FT/3/CC12: Research Methodology


Unit - I

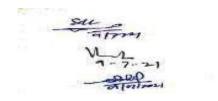

Objectives and types of research: motivation and objectives- research methods vs. methodology, types of research- descriptive vs. analytical, applied vs. fundamental, quantitative vs. qualitative, conceptual vs empirical research formulation: defining and formulating the research problem-. selecting the problem, necessity of defining the problem, importance of literature review in defining a problem, literature review-primary and secondary source reviews, hypothesis- definition, qualities of a good

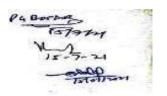
	hypothesis, null hypothesis and alternatives.
Unit – II	Research design and methods: basic principles, need of research design- features of good design, important concepts relating to research design, criteria of selecting a sampling procedure, characteristics of a good sample design, sampling methods, measurement: concept of measurement, problems in measurement in research - validity and reliability. levels of measurement- nominal, ordinal, interval, ratio.
Unit – III	Data collection and analysis: execution of the research, observation and collection of data, methods of data collection, data processing and analysis strategies, data analysis with statistical packages, hypothesis testing, generalization and interpretation, univariate analysis (frequency tables, bar charts, pie charts, percentages).
Unit – IV	Meaning of interpretation, need of interpretation, technique of interpretation, precaution in interpretation, layout of a research paper, journals in computer science, impact factor of journals, ethical issues related to publishing, plagiarism and self-plagiarism. reports and thesis writing: structure and components of scientific reports, types of report- technical reports and thesis, writing-synopsis, abstract, illustrations and tables, results, summary, reference citing and listing.
	Text/Reference Books
Text Books	 J. Garg, B.L, Karadia, R, Aggarwal F, An Introduction to Research Methodology, RBSA Publishers, 2002. Kothari, C.R, Research Methodology: Methods and Techniques. New Age International, 1990 Santosh Gupta, Research Methodology and Statistical Techniques, Deep & Deep Publications Pvt. Ltd., 2008
Reference Books	N. Gurumani, Scientific Thesis Writing and Paper Presentation, MJP Publishers. Montgomery, Douglas C, Design and Analysis of Experiments, Wiley India Pvt. Ltd.

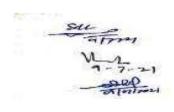




	MTech/CSE/FT/3/DSC3(i)IoT and Cloud Computing												
Course Type	Course Type Course Contact Delivery Maximum Marks Exam												
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Optional Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance						

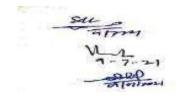

Course Objectives: To study the fundamental concepts of cloud computing, its enabling technologies, cloud service modes and security concerns, to learn core issues of Internet of Things, IoT communication protocols and security concerns.

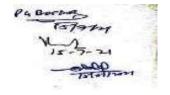

Course Outcomes	By the	e end of	this cou	ırse, the	student	t will be	able to	o:				
CO1	applic list/de	list/define IoT: framework, architecture, design, communication challenges, applications, principles of web connectivity. list/define cloud computing: evolution, characteristics, working, service models, virtualization, architecture, security challenges and risks.										
CO2	unders challe unders	understand and describe IoT: framework, architecture, design, communication challenges, applications, principles of web connectivity. understand and describe cloud computing: evolution, characteristics, working, service models, virtualization, architecture, security challenges and risks.										
CO3						erent fie						
CO4	diagrammatise IOT: framework, architecture, physical and logical design. diagrammatise cloud computing: service models, service-oriented architecture.											
CO5	ŭ î									ologies,		
	CO-PE	O Map	ping M	atrix fo	r Cour	se MTe	ch/CS	E/FT/3/	/DSC3(i)		
Cos	PE	O1		PEO2		P	EO3		PEO4	1	PEC)5
CO1	-	1		1			3		3		3	
CO2		2		2			3		3		3	
CO3	3	3		3			3		3		3	
CO4	3	3		3			3		3		3	
CO 5	3	3		3			3		3		3	
Average	2.4 2.4 3 3 3											
	CO-PO Mapping Matrix for Course MTech/CSE/FT/3/DSC3(i)											
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	_	-	-	1	3



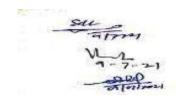
CO2	2	1	1	3	1	1		<u> </u>	<u> </u>		2	3
CO2	3	1	1	3	3	<u> </u>	<u> </u>		- -	<u> </u>	3	3
CO3	3	3	1	3		_	-	-	-	_ 	3	3
CO5	3	1	1	3	3	<u> </u>	<u> </u>	<u>-</u>	<u>-</u>	<u>-</u>	3	3
		1.8			1.8	1 -	<u> </u>	-	-	<u> </u>	ļ .	3
Average 2.4 1.8 1 2.6 1.8 - - - - 2.4 CO-PSO Mapping Matrix for Course MTech/CSE/FT/3/DSC3(i)										2.4	3	
COs	F	PSO1		PSO2	2	P	SO3		PSO4	L	PSC)5
CO1		3		2			1		-		3	
CO2		3		2			2		-		3	
CO3		3		2			3		-		3	
CO4		3		2			3		-		3	
CO5		3		2			3		-		3	
Average		3		2			2.4		-		3	
	N	/Tech/(SE/FT	Cour 5/3/DSC	rse Cor 3(i)IoT		oud C	omputi	ng			
Unit - I Unit - II	Internet of Things: What is the IOT and why is it important, IoT Conceptual Framework, IoT Architectural view, Technology Behind IoT, Sources of IoT, Examples of IoT, M2M Communication, Layered Architecture (3 & 5 Layered) of IoT, Physical Design and Logical Design, Domain-specific IoTs, Security Issues of IoT. Communication challenges related to IoT, Enabling technologies for IoT. Applications of IoT: Home Automation, Smart Cities, Social Life and Entertainment, Health & Fitness, Smart Environment and Agriculture, Supply Chain and Logistics, Energy conservation.											
Unit - III	Devices Introdu Evoluti Works,	ction to on of cl Role of	ge Con Cloud oud con network	nmunica d Comp nputing, rks in Cl	ution Prouting: character oud con	otocols What interistics when the state of t	for Coss a class of closs.	nnected loud, de oud com	Device efinition puting,	es. n of cl How C	oud con	nputing,
Unit - IV	Service Models: IaaS, PaaS, SaaS, Public, private and hybrid cloud. Introduction to virtualization, Resource Virtualization-Server, Storage, Network, Load Balancing and Virtualization. Hypervisors and its types, Service Oriented Architecture (SOA), Overview of Security Issues, Challenges and Risks of Cloud.											
				Text/Re	eferenc	e Books	8					
Text Books	 Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing a Practical Approach, Tata McGraw Hill, New Delhi, 2010 Robert Elsenpeter, Toby J. Velte, Anthony T. Velte, Cloud Computing: A Practical Approach, 1e, Tata McGraw Hill Education, 2011. Judith Hurwitz, Robin Bloor, Marcia Kaufman, Fern Halper, Cloud Computing for Dummies, Wiley Publishing, 2010 											

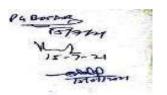
Reference Books	1. RajkumarBuyya, James Broberg, AndrzejGoscinski, Cloud Computing- Principles and
	Paradigms, Wiley, 2011. 2. Raj Kamal, Internet of Things-Architectures and Design Principles, McGraw Hill
	Education, 2017

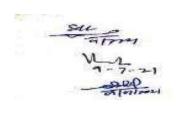




	MTech/CSE/FT/3/DSC3(ii)Grid Computing													
Course Type	Course Type Course Contact Delivery Maximum Marks Exam													
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods							
Optional Theory	04	04	4 Lecture 70 30			3 Hours	TEE/MTE/ Assignment/							
					20 5 5		Attendance							

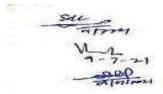

Course Objectives The objective of this course is to study, learn, and understand the concepts of grid computing.

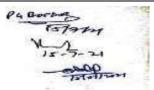

Course Outcomes	By the	end of	this cou	irse, the	studen	will be	able to	o:				-
CO1	govern	define: cluster computing ,grid computing, meta computing, SOAP, WSDL, e-governance, OGSA, WSRF, GT4,cluster middleware, protocols for clusters, HiPPI, process scheduling.										
CO2	WSDL	understand and describe: cluster computing ,grid computing, meta computing, SOAP, WSDL, e-governance, OGSA, WSRF, GT4,cluster middleware, protocols for clusters, HiPPI, process scheduling.										
CO3				•					ols, load ba on of clus		ng and sharing,	
CO4	OGSA categor	diagrammatize the architecture of: grid Computing ,service oriented architecture,GT4, OGSA-DAI, cluster categorize: clusters, protocols for clusters, networking and switching devices, scheduling policies, strategies for load balancing										
CO5	_	re and e		: cluster	rs, proto	ocols for	cluste	ers, so	cheduling	polici	es, strategies fo	r
	CO-PEC) Марр	oing Ma	atrix fo	r Cours	se MTeo	ch/CSI	E/FT	/3/DSC3(ii)		
Cos	PEC	O1		PEO2		P	EO3		PEO ₂	1	PEO5	
CO1	1			1			3		3		3	
CO2	2	,		2			3		3		3	
CO3	3	1		3			3		3		3	
CO4	3			3			3		3		3	
CO 5	3	3 3 3 3										
Average	Average 2.4 2.4 3 3 3											
CO-PO Mapping Matrix for Course MTech/CSE/FT/3/DSC3(ii)												
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	РО	8 PO9	PO1	0 PO11 PO	12



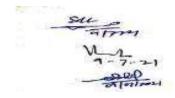
CO.1	1	3	1	1	1	_	_	_	_	_	1	3		
CO.2	2	1	1	3	1	_	_	-	-	-	2	3		
CO.3	3	1	1	3	3	-	-	-	-	-	3	3		
CO.4	3	3	1	3	1	-	-	-	-	-	3	3		
CO.5	3	1	1	3	3	-	-	-	-	-	3	3		
Average	2.4	1.8	1	2.6	1.8	_	_	-	-	-	2.4	3		
CO-PSO Mapping Matrix for Course MTech/CSE/FT/3/DSC3(ii)														
COs											PSC)5		
CO1		3		2			1		-		3			
CO2		3		2			2		-		3			
CO3		3		2			3		-		3			
CO4		3		2			3		-		3			
CO5		3		2			3		-		3			
Average		3		2			2.4		-		3			
Unit - I	Compu	uction: ting, e-0	Cluster Governa	E/FT/3/ and Gri ance and	d comp	i)Grid uting, M	leta-co	omputin	_			rid nctional		
	trends i	in Large	Data G	rids. e Servi	ce Orie	ented A	rchite	ecture:				nologies itecture,		
Unit - II	WSRF, Globus Manage GT4 A The G	, WSRF s Toolki ement, M rchitectu	Specifi it: Histo Monitor ure, GTa d Data	cation ory, vers ing and 4 Contai abases:	sion, Ap Discoveniners. Requir	oplication ery, Sec	ons, A curity, , Stor	pproach Data Cl	nes and horeogra	Benefit aphy an Broker,	s, Infras d Coord Integra	OGSA, structure dination, ation of ervices.		
Unit - III Cluster Computing: Approaches to Parallel Computing, Definition and Architecture of a Cluster, Categories of clusters. Cluster Middleware: Levels and Layers of Single System Image, Design objectives, Resource Management and Scheduling, Cluster programming Environment and Tools. Networking, Protocols and I/O for clusters: Networking and Interconnection/Switching Devices, Design Issues, Design Architecture, HiPPI, ATM, Myrinet, Memory Channel														
Unit - IV	Setting Up and Administering a Cluster: Setup of simple cluster, setting up nodes, clusters of clusters, System monitoring, Global Clocks Sync. Cluster Technology for High Availability: High availability clusters, high availability parallel computing, types of failures and errors, cluster architectures and configurations													

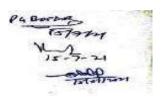
	for high availability, Failure/Recovery clusters. Process Scheduling: Job management System, Resource management system, policies of resource utilization, Scheduling policies. Load Sharing and Load Balancing: Introduction, Strategies for load balancing, Modelling parameters
	Text/Reference Books
Text Books	 Grid and Cluster Computing by C.S.R. Prabhu, PHI The Grid: Blueprint for a New Computing Infrastructure, Ian Foster, Carl Kesselman, Elsevier Series, 2004. Grid Computing for Developers, Vladimir Silva, Charles River Media, January 2006.
Reference Books	 Global Grids and Software Toolkits: A Study of Four Grid Middleware Technologies, High Performance Computing: Paradigm and Infrastructure, Laurence Yang and MinyiGuo (editors), Wiley Press, New Jersey, USA, June 2005. Grid Resource Management: State of the Art and Future Trends, JarekNabrzyski, Jennifer M. Schopf, Jan Weglarz, International Series in Operations Research & Management Science, Springer; 1e, 2003.

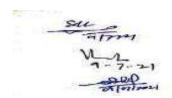


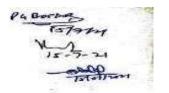


	MTech/CSE/FT/3/DSC3(iii)Quantum Computing													
Course Type	Course Type Course Contact Delivery Maximum Marks Exam													
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods							
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/							
					20 5 5		Attendance							

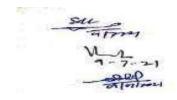

Course Objectives: The objective of this course to understand the basic concept of quantum computing it's relation to mathematics and physics, quantum circuits, quantum information and cryptography, quantum algorithms.


Course Outcomes	By the	by the end of this course, the student will be able to:										
CO1		lefine quantum computation: mechanics, circuit, multiple ,teleportation, cryptography and programming languages										
CO2		nderstand and describe quantum computation: mechanics, circuit, multiple,										
	telepo	rtation,	quantur	n algori	thms cr	yptograj	phy an	d progr	amming	g langua	ges.	
	interp	ret: erro	r correc	tion and	compu	tation o	f fault	-toleran	t.			
CO3				ship of								
				nip betw								
CO4					ning lar	iguages	, quan	tum co	mputati	ions, er	ror corr	ection,
G0.		olerant o										
CO5				gorithms	s, classi	cal and	quantu	ım ıntoı	rmation	theory,	classica	ıl gates
		and quantum gates. Evaluate: classical computation on quantum computers.										
	CO-PEO Mapping Matrix for Course MTech/CSE/FT/3/DSC3(iii)											
Cos	PE	O1		PEO2		P	EO3		PEO4	ļ.	PEC)5
CO1	,	1		1			3		3		3	
CO2	,	2		2			3		3		3	
CO3	3	3		3			3		3		3	
CO4	3	3		3			3		3		3	
CO 5	3	3		3			3		3		3	
Average	2	2.4 2.4 3 3 3										
	CO-PO	Mappi	ing Mat	trix for	Course	MTech	ı/CSE/	/FT/3/L	SC3(ii	i)		
Cos	PO1	PO2	PO3 PO4 PO5			PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO.1	1	3	1 1 1						_		1	3
CO.2	2	1	1	3	1	-	-	-	-	-	2	3



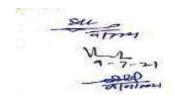

CO.3	3	1	1	3	3	_	-	_	_	_	3	3
CO.4	3	3	1	3	1	-	-	-	-	_	3	3
CO.5	3	1	1	3	3			_	-	_	3	3
Average	2.4	2.4 1.8		2.6	1.8	-	-	_	_	-	2.4	3
CO-PSO Mapping Matrix for Course MTech/CSE/FT/3/DSC3(iii)												
COs	F	PSO1		PSO2	2	P	SO3		PSO4		PSC)5
CO1		3		2			1		-		3	
CO2		3		2			2		-		3	
CO3		3		2			3		-		3	
CO4		3		2			3		-		3	
CO5		3		2			3		-		3	
Average		3		2			2.4		-		3	
Course Content MTech/CSE/FT/3/DSC3(iii)Quantum Computing												
Unit - I	Introduction to Quantum Computation: Concept and need of quantum computing, Quantum bits and quantum operations, Postulates of quantum mechanics, Bloch sphere representation of a qubit, multiple qubits, classical gates versus quantum gates.											
Unit - II	Unit - II Background Mathematics and Physics: Hilber space, Probabilities and measurements, entanglement, density operators and correlation, basics of quantum mechanics. Measurements in bases other than computational basis. Quantum Circuits: single qubit gates, multiple qubit gates, design of quantum circuits.											
Unit - III	informa	ation th theor	eory. 1	Bell sta	tes. Qu	antum	telepo	ortation.	. Quant	um C	al and c ryptograp and C	phy, no
Unit - IV	betwee algorith Noise	Quantum Algorithms: Classical computation on quantum computers. Relationship between quantum and classical complexity classes. Deutsch's algorithm, Deutsch's-Jozsa algorithm, Shor factorization, Grover search. Noise and error correction: Graph states and codes, Quantum error correction, fault-tolerant computation.										
	T			Text/Re								
Text Books	 An Introduction to Quantum Computing Algorithms, Pittenger A. O., 2000. Quantum computing explained, David McMahon, John Wiley & Sons, Inc. Publication 2008 Quantum computation and quantum information, Michael A. Nielsen and Isaac L. Chuang, Cambridge University Press 2010 Introduction to Quantum Mechanics, 2e, David J. Griffiths, Prentice Hall New Jersey 1995 											
Reference Books	 Quantum computing for computer scientists, Noson S. Yanofsky, Mirco A. Mannucci, Cambridge University Press 2008 Principles of Quantum Computation and Information, Vol. I: Basic Concepts, Vol II: Basic Tools and Special Topics, Benenti G., Casati G. and Strini G., World Scientific, 											

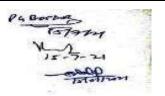
2004.


	MTech/CSE/FT/3/DSC4 (i): Data Warehousing and Data Mining									
Course Type Course		Contact	Delivery	Maxim	um Marks	Exam	Assessment			
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods			
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance			

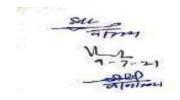
Instructions to paper setter for Final Term Examination: Final Term examination shall cover the whole content of the course. Total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective type questions from complete syllabus. In addition to compulsory first question there shall be four units in the question paper each consisting of two questions. Student will attempt one question from each unit in addition to compulsory question. All questions will carry equal marks.

Course Objectives: The objective of this course is to get the students familiar with different concepts of data warehouse and data mining, namely, OLAP, Association rule mining, classification and prediction.


Course Outcomes	At the end of this course, the student able to:
CO1	define: the concepts of data mining, data pre-processing, outliers, data warehouse,
	OLAP, association rule mining, data classification prediction and cluster Analysis.
CO2	describe: key process of data mining ,data warehousing, OLAP, data warehousing to
	data mining, association rule, classification and prediction methods.
CO3	apply: OLAP technology and association rules.
	use: decision induction, bayesion and back propagation classification methods.
CO4	differentiate: operational database systems and data warehousing, single dimensional and multidimensional association rules, and between various data mining classification methods.
CO5	evaluate: data mining and data warehouse, OLAP technology, single and multi-dimensional association rule.

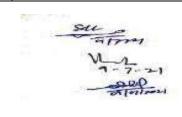

	CO-PE	О Мар	ping M	latrix f	or Cou	rse M	Tech/C	SE/FT/	/3/DSC	4(i)			
COs		PEO1		PEO2			PEO3			EO4	PI	PEO5	
CO1		1		1			3			3		3	
CO2		2		2			3			3		3	
CO3		3		3			3			3		3	
CO4		3		3			3		3			3	
CO5		3		3			3			3		3	
Average		2.4		2.4			3			3		3	
	CO-P	О Марр	ing Ma	atrix fo	r Cour	se MT	ech/CS	E/FT/	3/DSC4	(i)			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3		1	1	-	-	-	-	-	1	3	
CO2	2	2 1		3	1	-	-	-	-	-	2	3	
CO3	3	1	1	3	3	-	-	-	-	-	3	3	

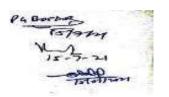
004	1 2	1 2	1 1		1	1	1	 	1	1	1 2		
CO4	3	3	1	3	1	-	-	-	-	-	3	3	
CO5	3	1	1 3 3 -				-	-	-	-	3	3	
Average	2.4 1.8 1 2.6 1.8 - - - - 2.4											3	
CO-PSO Mapping Matrix for Course MTech/CSE/FT/3/DSC4(i)													
COs]	PSO1		PSO	2		PSO3		PS	SO4	P	SO5	
CO1		3 1 - 3											
CO2		3		3			2			-		3	
CO3		3		3			3			-		3	
CO4		3		3			3			-		3	
CO5		3		3			3			-		3	
Average		3		3			2.4			-		3	
Unit - I		Tech/CS		3/DSC4		ta Wai						cess, data	
Unit - II	mining, kind of data, Functionalities, interesting patterns, classification of data mining system, Major issues, Data Mining Primitives. Data Pre-processing: Data cleaning, Data Integration and transformation, Data reduction, Discretization and concept hierarchy generation. Data visualization. Outliers, Types of Outliers and challenges of Outlier Detection Unit - II Data warehouse and OLAP Technology for data mining: data warehouse, differences									ning, Data hierarchy of Outlier			
	betwe Mode warel	een oper el, Data nousing	ational a wai to data	data be chouse mining	Arch Arch , Data	tems a itecture wareho	nd data e, Dat use usa	a wareł a wai ge.	nouse, A	A Multi E Imple	dimensio ementatio	onal Data on, data	
Unit - III	transa Minir wareh	nctional ng mult	databa tidimer From	ses, min	ning m	altileve ation	el assoc rules	iation r from	rules fro relation	om trans nal data	saction of abases	ules from databases, and data aint-based	
Unit - IV	 Unit - IV Data Mining-Classification and Prediction: issues regarding classification and prediction, classification by decision induction, Bayesian classification, classification by back propagation, classification based on concepts from association rule mining other classification methods. Cluster Analysis: Introduction, Types of Data, Applications and Trends in Data Mining. 								by back ing other				
Text/Reference Books													
Text Books.	 Ale Berson, Stephen Smith, KorthTheorling, Data Mining, TMH. Adruaans, Longman, Addison-wesley Data Mining, Addison-Wesley Longman, Data Warehousing in the Real World. 												

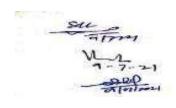

Reference Books	1. Chanchal Singh, Data Mining and Warehousing, Wiley.
	2. Jiawei Han and MichelineKamber, Data Mining: Concepts and Techniques, San
	Francisco: Morgan Kaufmann Publishers, 2001.

MTech/CSE/FT/3/DSC4(ii)Big Data Analytics									
Course Type	Course Credit	Contact Hours/ Week	Delivery Mode	Maximu External	m Marks Internal	Exam Duration	Assessment Methods		
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance		

Course Objectives: The objective of this course is to get the students familiar with concepts of big data, its architecture and applications; NoSQL and HADOOP.

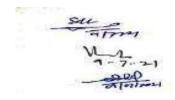

Course Outcomes	At the end of this course, the student would have understanding of:
CO1	define: Big Data and Hadoop, digital data, Apache Hadoop, analysing Data with Unix
	tools and Hadoop, Hadoop Streaming, Hadoop Echo System, IBM Big Data Strategy,
	HDFS, Hadoop Ecosystem, Pig, Hive shell and services, HBasics, Big SQL.
CO2	understand and describe: Big Data and Hadoop, Analysing Data with Hadoop,
	Hadoop Streaming, Hadoop Echo System, IBM Big Data Strategy, Hadoop
	Distributed File System, command line interface, job scheduling, shuffle and sort,
	task execution, Hadoop Ecosystem, Pig, HiveQL, Hbase.
CO3	apply and use: Apache Hadoop, HDFC, HBasic, Big Data and Hadoop, HDFS
	command line interface, Hadoop file system interfaces, data flow, Hive services.
CO4	classify: Big Data and Hadoop, Big Data Analytics, Apache Hadoop, HDFS ,Hive
	shell, Hive services.
CO5	Compare feature set of Pig, Hadoop, HDFC

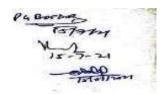

CO-PEO Mapping Matrix for Course MTech/CSE/FT/3/DSC4(ii)										
COs	PEO1	PEO2	PEO3	PEO4	PEO5					
CO1	1	1	3	3	3					



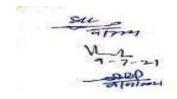
														7
CC)2		2 2 3 3 3											
CC	03		3		3			3			3		3	
CC	04		3		3			3			3		3	
CC) 5		3 3 3 3								3			
Avei	rage		2.4		2.4	4		3			3		3	
	CO	-PO	Mappin	g Matı	rix for C	Course 1	MTech/	CSE/I	FT/3/D	SC4(i	ii)			
CC	Os H	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO	D 1	1	3	1	1	1	-	-	_	_	-	1	3	
CO)2	2	1	1	3	1	-	-	-	-	-	2	3	
CO	03	3	1	1	3	3	-	-	-	_	-	3	3	
CO)4	3	3	1	3	1	-	-	_	_	-	3	3	
CO)5	3	1	1	3	3	-	-	-	-	-	3	3	
Aver	rage	2.4	1.8	1	2.6	1.8	-	-	_	-	-	2.4	3	
	CO-	PSO	Mappir	ng Mat	rix for (Course	MTech	/CSE/	FT/3/1	DSC4	(ii)			2.
CC	Os]	PSO1 PSO2 PSO3 PSO4 PSO5											
CO) 1		3	3				1			-		3	
CO)2		3		3			2			-		3	
CO)3		3		3			3			-		3	
CO) 4		3		3			3			-		3	
CO)5		3		3			3			-		3	
Aver	rage		3		3			2.4	-		-		3	
					Course									
	1		MTe	ch/CSI	E/FT/3/I	DSC4(ii): Big l	Data A	nalyti	cs				
UNIT -1	Introduction		-		_		_				_		_	
	Data, Big D Analysing D		-		•	_	_		_	-	_			
	Big Data app			юор, 11	adoop s	oueanin	ig, mau	oop Ec	лю зу	sicili,	IDM DI	g Data k	strategy,	
UNIT -II														
	-	HDFS (Hadoop Distributed File System): The design of HDFS, HDFS concepts, command line interface, Hadoop file system interfaces, data flow, data ingest with flume and Scoop and Hadoop archives, Hadoop I/O: compression, serialization, Avro and file-based data structures.												
UNIT -III		Map Reduce: Anatomy of a Map Reduce job run, failures, job scheduling, shuffle and sort, task execution, Map Reduce types and formats, Map Reduce features.												
Pig: Introduction to Pig, execution modes of Pig, comparison of Pig with databases, grunt, Pig latin, user defined functions, data processing operators. Hive: Hive shell, Hive services, Hive metastore, comparison with traditional databases, HiveQL, tables, querying data and user defined functions. Hbase: HBasics, concepts, clients, example, Hbase versus RDBMS.														

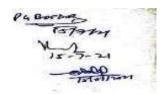
	Big SQL: Introduction								
Text/Reference Books									
Text Books	 Tom White "Hadoop: The Definitive Guide" Third Edit on, O'reily Media, 2012. SeemaAcharya, SubhasiniChellappan, "Big Data Analytics" Wiley 2015. ArvindSathi, "BigDataAnalytics: Disruptive Technologies for Changing the Game", MC Press. 								
Reference Books	 Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007. Jay Liebowitz, "Big Data and Business Analytics" AuerbachPublications, CRC press (2013) AnandRajaraman and Jeffrey David Ulman, "Mining of Massive Datasets", Cambridge University Press, 2012. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley & Sons, 2012. 								



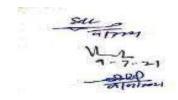

	MTech/CSE/FT/3/DSC4(iii)Data Science											
Course Type	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance					

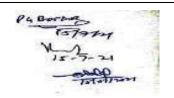
Course Objectives: The objective of this course is to get the students familiar with the concepts of data science, data analysis and associated visualization techniques.


Course Outcomes	At the end of this course, the student would have an understanding of:
CO1	define: data science process, classification of data, big data, web data, sampling, data analysis techniques-correlation, regression, mean, mode, kurtosis, Bayesian inference etc., neural network, fuzzy logic, rule of mining, hadoop, hive, cloud database, and visualization.
CO2	understand and describe: graphical representation of data, storage and retrieval of data, evolution of analytic scalability, sampling distribution, data analysis techniques, Bayesian model and network, induction rule, neural network, fuzzy logic, data mining techniques, data analysis framework and visualization.
CO3	use: data science process, modern data analytic tools, statistical concepts, data analysis techniques, Bayesian network, induction rule, fuzzy logic, data mining techniques, hadoop file system, hive, S3, cloud database, inference and visualization.
CO4	categorize: analytic processes and tools, analysis, reporting, sampling and resampling, data analysis techniques, linear and non-linear time series, sequential, temporal and spatial mining, egonets systems and application.
CO5	choose: data science process, data storage, data analytic tools and processes, sampling method, data analysis technique, time series, mining techniques, visual data analysis framework and technique suitable in given situation.

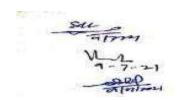

(CO-PEO Mapping Matrix for Course MTech/CSE/FT/3/DSC4(iii)											
Cos	PEO1	PEO2			PEO3		P	EO4	F	PEO5		
CO1	1		1			3		3		3	3	
CO2	2		2			3		3		3	3	
CO3	3		3			3		3		3	3	
CO4	3		3			3		3		3	3	
CO5	3		3			3		3		3	3	
Average	2.4		2.4			3		3		3	3	
	CO-PO Mapping Matrix for Course MTech/CSE/FT/3/DSC4(iii)											
COs	PO1 PO2	PO3 P	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	

CO1	1	3	1	1	1	_	-	_	-	-	1	3
CO2	2	1	1	3	1	_	-	-	-	-	2	3
CO3	3	1	1	3	3	-	-	-	-	-	3	3
CO4	3	3	1	3	1	-	-	-	-	-	3	3
CO5	3	1	1	3	3	-	-	-	-	-	3	3
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3
	CO-PSO	Э Марр	oing Ma	atrix for	Cours	e MTeo	ch/CSI	E /FT/3 /	DSC4(i	ii)		
COs]	PSO1		PSO2	2	P	SO3		PSO4		PSC)5
CO1		3		3			1		-		3	
CO2		3		3			2		-		3	
CO3		3		3			3		-		3	
CO4		3		3			3		-		3	
CO5		3		3			3		_		3	
Average		3		3			2.4		-		3	
		MT	Tech/CS	Cour SE/FT/3	rse Cor /DSC4		ata Sci	ence				
Unit – II	big data analyti Statisti error. Data variabl	ta, chall c processical Con Analysides, ana	enges of sses and acepts:	of conve l tools, a sampling relation, sing mea	ntional analysis g distrib , regres	system vs repo outions, sion, p	s, web orting, re-san orobabi	data, e modern npling, flity, Cotandard	volution data an statistic ondition deviati	alytic to alytic to cal infer al prob on, ske	alytic sca bools; rence, pro- pability, wwness,	of data, alability, rediction random kurtosis, Bayesian
	networ	ks, supp	ort vec	tor and les: linea	kernel r	nethods	s;					
Unit – III	compe Fuzzy method Associ	titive lea Logic: ds, neuro ation R	arning, extracti o fuzzy ule Min	principa ng fuzz modelli	l composition of the composition	onent and ls from	nalysis data,	and ne fuzzy c	ural net lecision	works; trees, s	stochasti	llization, c search emporal
Unit – IV	Data Analysis Frameworks and Visualization: Map Reduce, Hadoop, Hive, sharding, NoSQL databases, cloud databases, S3, Hadoop Distributed File Systems, visualizations, visual data analysis techniques, interaction techniques, social network analysis, collective inferencing, Egonets systems and applications.											
				Text/Re	eference	e Book	s					
Text Books.	 Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007. AnandRajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012. 											



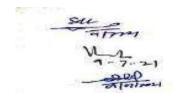

Reference Books		ng the Big Data Tidal Wave: Finding Opportunities in Huge Data nced Analytics", John Wiley & Sons, 2012.
	Jiawei Han, Miche Elsevier.	lineKamber "Data Mining Concepts and Techniques", 2e,
	Rachel Schutt, Cat	hy O'Neil, "Doing Data Science", O'Reilly Publishers, 2013.
	Foster Provost, Tor	m Fawcet, "Data Science for Business", O'Reilly Publishers, 2013.
		alytics in a Big Data World: The Essential Guide to Data Science s", Wiley Publishers, 2014.
		S. N Deepa, "Introduction to Neural Networks Using Matlab y- Hill Education, 2006.

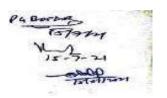
MTech/CSE/FT/3/CC	MTech/CSE/FT/3/CC13: Software Lab based on MTech/CSE/FT/3/CC11 (Python Programming)											
Course Type	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment					
	Credit	Hours/Wee k	Mode	External	Internal	Duration	Methods					
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File					


Course Objectives: The objective of this course is to perform the modeling and simulation experiments with PYTHON. Concepts covered in MTech/CSE/FT/3/CC11 will be implemented.

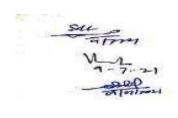
Course Outcomes	At the end of this course, the student will be able to:								
CO1	define: installations, working, structures, control statements, operators, lists ,object oriented programming concepts, python libraries.								
CO2	explain: conditional libraries and package		-	s ,file handl	ing concepts,				
CO3	use: various python l apply: python progra								
CO4	categorize: data typ python libraries.	categorize: data types, dictionaries, conditional & control statements, functions, python libraries.							
CO5	compare: data types, libraries.	dictionaries, condit	tional & control sta	itements, fund	ctions, python				
CO6	design: basic and adv	anced applications	in python.						
	CO-PEO Mapping M	atrix for Course M	/Tech/CSE/FT/3/0	CC13					
Cos	PEO1	PEO2	PEO3	PEO4	PEO5				
CO1	1 1 3 3 3								
CO2	2 2 3 3 3								
CO3	3	3	3	3	3				

CO4		3			3			3		3		3
CO5		3			3			3		3		3
CO6		3			3		3			3		3
Average		2.5			2.5			3		3		3
	CO-PC) Mapp	ing Ma	atrix fo	r Cour	se M	Fech/CS	E/FT/3	/CC13			
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	-	-	-	1	3
CO2	2	1	1	3	1	-	-	-	-	_	2	3
CO3	3	1	1	3	3	-	-	-	-	-	3	3
CO4	3	3	1	3	1	-	-	-	-	_	3	3
CO5	3	1	1	3	3	-	-	-	-	_	3	3
CO6	3	3	3	3	3	-	-	-	-	-	3	3
Average	2.5	2	1.3	2.6	2	-	-	-	-	-	2.5	3
C	O-PSO	О Марр	oing M	atrix fo	r Cou	rse M	Tech/CS	SE/FT/	3/CC13	3		
Cos		PSO1		PSO	O2		PSO	3		PSO4		PSO5
CO1		3		3			1			-		3
CO2		3		3			2			-		3
CO3		3		3			3			-		3
CO4		3		3			3			-		3
CO5		3		3			3			-		3
CO6		3		3			3			-		3
Average		3		3			2.5			-		3



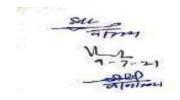


MTech/C	MTech/CSE/FT/3/CC14: Lab based on MTech/CSE/FT/3/CC12 (implementation in MATLAB)											
Course	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment					
Type	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods					
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File					

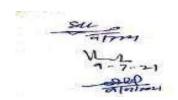

Course Objectives: The objective of this course is to inculcate a flavor of research in students by allowing them to work on a real-life research problem using MATLAB. Concepts covered in MTech/CSE/FT/3/CC12 will be implemented.

Course Outcomes	At the end of	of this course, the stud	lent will be able	to:							
CO1	define: objectives, hypothesis, interpretation, data analysis, data collection,										
	research design and method, interpretation, data analysis, sampling.										
CO2		bjectives, hypothes	-	_							
	research de	research design and method, interpretation, data analysis, sampling.									
CO3		neasurement. data o	collection, proc	essing, sampling,	analysis and its						
	strategies, re	<u> </u>									
CO4	_	research, samplin	_	ta collection tec	hniques, reports						
	-	rocessing strategies	•								
	-	ata analysis.									
CO5	_	sampling methods,	data collection	on techniques, r	eports and data						
	processing strategies.										
CO6	create: thesi										
	design: rese										
	interpret(dri		1.00T								
C	O-PEO Map _l	oing Matrix for Cou	rse MTech/CSI	E/F1/3/CC14							
Cos	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	1	3	3	3						
CO2	2	2	3	3	3						
CO3	3	3	3	3	3						
CO4	3	3	3	3	3						
CO5	3	3	3	3	3						
CO6	3 3 3 3										
Average 2.5 2.5 3 3											
C	CO-PO Mapping Matrix for Course MTech/CSE/FT/3/CC14										

Cos	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	3	-	3	1	3
CO2	2	1	1	3	1	-	-	3	-	3	2	3
CO3	3	1	1	3	3	-	-	3	-	3	3	3
CO4	3	3	1	3	1	-	-	3	_	3	3	3
CO5	3	1	1	3	3	-	-	3	-	3	3	3
CO6	3	3	3	3	3	-	-	3	-	3	3	3
Average	2.5	2	1.3	2.6	2	-	-	3	_	3	2.5	3
C	O-PSC) Map	ping M	atrix	for Co	urse M	Tech/C	SE/FT/	3/CC1	4		
Cos	PS	01	P	SO2		PSO3			PSO4	-	PSO5	
CO1	3	3		3	ĺ		1	ĺ	3	ĺ	3	
CO2	3	3		3			2		3		3	
CO3	3	3		3			3		3		3	
CO4	3	3		3		3			3		3	
CO5	3	3	3				3		3		3	
CO6	3	3	3			3			3		3	
Average	3	3		3		2	2.5		3		3	



	MTech/CSE/FT /4/SEC1:Dissertation												
Course	Course	Contact	Delivery	Maxim	ım Marks	Exam	Assessment						
Type	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods						
Research Work	20	04	-	400	100	-	Teacher interaction/ Dissertation/ Viva voce						


Course Objectives: The objective of this course is to inculcate a flavor of research in the scholars by allowing them to work on a real life research problem.

Course Outcomes	Course Outcomes										
CO1	define: objectives, hypothesis, interpretation, data analysis, data collection,										
	research design and method, interpretation, data analysis, sampling.										
CO2	describe: objectives, hypothesis, interpretation, data analysis, data collection,										
	research design and method, interpretation, data analysis, sampling.										
CO3	Illustrate: measurement. data collection, processing, sampling, analysis and its strategies, reports.										
CO4	categorize: research, sampling methods, data collection techniques, reports										
	,and data processing strategies.										
	perform: data analysis.										
CO5											
	processing strategies.										
CO6	create: thesis, reports.										
	design: research tool . interpret(drive): results.										
Co	CO-PEO Mapping Matrix for Course MTech/CSE/FT /4/SEC1										
Cos	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	1	3	3	3						
CO2	2	2	3	3	3						
CO3	3	3	3	3	3						
CO4	3	3	3	3	3						
CO5	3	3	3	3	3						
CO6	3	3	3	3	3						
Average	2.5	2.5	3	3	3						
CO-PO Mapping Matrix for Course MTech/CSE/FT /4/SEC1											

Cos	PO1	P02	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12
CO1	1	3	1	1	1	-	_	3	-	3	1	3
CO2	2	1	1	3	1	-	-	3	-	3	2	3
CO3	3	1	1	3	3	-	-	3	-	3	3	3
CO4	3	3	1	3	1	-	-	3	-	3	3	3
CO5	3	1	1	3	3	-	-	3	-	3	3	3
CO6	3	3	3	3	3	-	-	3	-	3	3	3
Average	2.5	2	1.3	2.6	2	-	-	3	-	3	2.5	3
CO-PSO Mapping Matrix for Course MTech/CSE/FT /4/SEC1												
Cos	PS	01	PSO2			PSO3			PSO4		PSO5	
CO1	3	3	3			1			3		3	
CO2	3	3	3			2			3		3	
CO3	3	3	3			3			3		3	
CO4	3	3	3			3			3		3	
CO5	3	3	3			3			3		3	
CO6	3	3	3			3			3		3	
Average	3	3		3		2.5			3		3	

