	MCA/GEN/1/CC1: Computer Architecture and Parallel Processing											
Course Type	Course	Contact	Delivery	Maximu	ım M	arks		Exam	Assessment			
	Credit	Hours/ Week	Mode	External	Int	erna	al	Duration	Methods			
Core Theory	04	04	Lecture	70	30 20 5 5		3 Hours	TEE/MTE/ Assignment/ Attendance				

Course Objectives: To study the fundamental concepts of computer architecture, various computational models, evolution of instruction level processors, classification of parallel architectures and MIMD architectures.

and winvid architect	uics.											
Course	At tl	ne end	of th	is cou	se, th	e stud	ent wi	11 be a	ible to):		
Outcomes												
CO1	define the concepts of: computer architecture including types of computer architecture, computational model, instruction level processors, code scheduling for ILP processors, distributed and shared MIMD architectures.											
CO2	and shar	distril ed MI	buted MD ฮ	comp archited	uting, ctures	instr	uction	level	proc	essors,	distrib	, parallel uted and
CO3				erent memo			comp	putatio	onal	model	s, arcl	hitecture,
CO4		sify: c	_		al mo	dels,	comp	ıter a	rchite	ctures,	process	sors, and
CO5	Compare and choose (and justify) a particular: computational model, architecture and memory model in a given situation.											
	CO-PEO Mapping Matrix for Course MCA/GEN/1/CC1											
COs	P	EO1		PEO:	2	I	PEO3		PEC	04	P	EO5
CO1		1		3			1		3			3
CO2		2		3			1		3			3
CO3		3		3			1		3			3
CO4		3		3			1		3			3
CO5		3		3			1		3			3
Average		2.4		3			1		3			3
	CO-PO Mapping Matrix for Course MCA/GEN/1/CC1											
COs	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12								PO12		
CO1	1	3	1	1	1	-	3	-	-	-	-	-

CO2	2	1	1	3	1	-	3	-	-	-	-	-	
CO3	3	1	1	3	3	-	3	-	-	-	-	-	
CO4	2	1	1	3	1	- 3 -			-	-	-	-	
CO5	2	1	3	1	3	-	3	-	-	-	-	-	
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	-	-	-	
	CO-	 PSO	Mappi	 ing Ma	 trix fo	 or Cou	ırse M	 CA/G	 EN/1/	CC1			
COs	PSO1 PSO2 PSO3 PSO4 PSO5												
CO1	3 1 3 1 -												
CO2	3	3		1			3		2			-	
CO3	3	3		1			3		3			-	
CO4	3 1 3 -										-		
CO5	3	3		1			3		3			-	
Average	3	3		1		3		2	.4			-	
MC	A/GE	N/1/C	C1: C	Comput		Conte chitect		d Pa	rallel P	rocess	ing		
Unit – I	evolu levels	ition a s of a	nd int ıbstrac	erpreta	tion o ntrodu	f the o	concept to para	t of c	ompute process	er arch	itecture	nal model, at different d levels of	
Unit – II	instru	ections	, instr	ruction	sched	uling,	concep	ts of	pipelin	e proc		ies between ntroduction sors.	
Unit – III	netwo	orks,	interco	•	on top	pologie	es, swi	itchin	g tech			rconnection and circuit	
Unit – IV	Unit – IV Shared Memory MIMD Architectures: Dynamic interconnection networks-shared path, switching networks-crossbar and multistage networks, Cache coherence problem, Hardware based cache coherence protocol-snoopy cache protocol, Directory scheme, Hierarchical cache coherence protocol, software-based protocols.												
Text/Reference Books													
Text Books				anced (
Reference Books	Kai Hwang, Advanced Computer Architecture – Parallelism, Scalability, Programmability, Tata McGraw Hill.												

	MCA/GEN/1/CC2: Computer Networks											
Course Type	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment					
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods					
Core Compulsory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/					
Theory					20 5 5		Attendance					

Course Objectives: The objective of this course is to make the students familiar with the topics of networking, data communication, modes of transmission, communication media, routing, error control and congestion control.

Course	At the end of	this course, th	e student will be	e able to:							
Outcomes											
CO1	networking protocols us	define the terms and concepts of data communication and computer networking including types of network topologies, reference models, protocols used in data communication, transmission modes and media, switching and multiplexing.									
CO2	computer ne	tworking inclued in data co	iding network	topologies, re data transmiss	nmunication and aference models, sion modes and						
CO3	and commonication	apply the techniques learnt here in the design and evaluation of computer and communication networks and decide which competing communication media, and network topology/switching/protocol/technology will suit a particular situation.									
CO4	differentiate networks, ne error contro	various type etwork topolog ol mechanism	s of: compute ies, switching a	er and data and multiplexi otocols, transi	communication ng mechanisms, mission modes,						
CO5	transmission	media, switchi	ng and multiple	exing technique	work topologies, es, protocols and atrol techniques.						
	CO-PEO Mapping Matrix for Course MCA/GEN/1/CC2										
COs	PEO1 PEO2 PEO3 PEO4 PEO5										
CO1	1 3 1 3										
CO.2	2	3	1	3	3						

CO3	3 3 1 3											3	
CO4		3		3			1				3		
CO5		3		3			1				3		
Average	,	2.4		3			1		3			3	
	CO	-PO M	Iappi	ng Mat	rix fo	r Cou	rse MO	CA/GF	EN/1/C	CC2	<u> </u>		
COs	PO1	PO2	PO3	PO4	PO5	PO6 PO7 PO		PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	3	1	-	2	-	-	
CO.2	2	1	1	3	1	-	3	2	-	2	-	-	
CO3	3	1	1	3	3	-	3	3	-	2	-	-	
CO4	2	1	1	3	1	-	3	3	-	2	-	-	
CO5	2	1	3	1	3	-	3	3	-	2	-	-	
Average	2 1.4 1.4 2.2 1.8					-	- 3 2.4 - 2						
	CO-PSO Mapping Matrix for Course MCA/GEN/1/CC2												
COs	PS	O1		PSO2		F	PSO3		PSC	04	P	SO5	
CO1	3	3		2			3		1			-	
CO.2	3	3		2			3		2			-	
CO3	3	3		2			3		3			-	
CO4	3	3		2			3		3			-	
CO5	3	3		2			3		3			-	
Average	3	3		2			3		2	.4		-	
		M	CA/G	Co EN/1/0	ourse (CC2: (etworl	ks				
Unit - I	Unit - I Network concepts: goals and applications of computer networks; topologies; categories of networks - LAN, MAN, WAN; point-to point, and broadcast networks. Networks architecture: concepts of protocols & services; OSI model and functions of its layers; TCP/IP reference model. TCP/IP: elements of transport protocols; transmission control protocol (TCP); user datagram protocol (UDP); internet protocol (IP).												
Unit - II	Data communication concepts: components of a data communication system; transmission modes; transmission media — guided and wireless media; introduction to switching (circuit, message and packet) and multiplexing (frequency division and time division); modem. Introduction to SMDS, X.25, ISDN networks, frame relay and ATM networks.												
Unit - III Framing and error control: framing techniques; error control - error detection &													

	correction. Data link control: acknowledgments, sliding window protocols. Multiple Access Control, flow and error control, token bus, token ring, DQDB.
Unit - IV	Routing: deterministic and adaptive routing; centralized and distributed routing; shortest-path; flooding; flow-based; optimal; distance-vector, link-state, hierarchical; routing for mobile hosts; broadcast and multicast routing. Congestion control: principles of congestion control; traffic shaping; choke packets; load shading; RSVP.
	Text/Reference Books
Text Books	 Andrews, Tananbaum, Computer Networks – PHI. Fred Halsall, Data Communications, Computer Networks and Open Systems, 4e, Addison Wesley. William Stalling, Data and Computer Communications, 5e, PHI.
Reference Books	2. Behrouz, Frozen, Introduction to Data Communications and Networking, Tata McGraw Hill.

	MCA/GEN/1/CC3: Software Engineering											
Course Type	Course	Contact	J J		ım Marks	Exam	Assessment					
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods					
Core Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/					
					20 5 5		Attendance					

Course Objectives: The objective of this course is to make the students familiar with the topics of software crisis, software engineering paradigms, software configuration management, design, coding, testing and maintenance.

Course	At the end of this course, the student will be able to:
Outcomes	
CO1	enumerate/define the concepts of: software and software engineering,
	software development paradigms, phases of software development,
	methods of assessing quality and reliability.
CO2	describe and summarize: phases of software development process, testing
	techniques, relationship between reliability and quality.
CO3	illustrate various techniques of: requirement analysis, design, coding,
	testing and maintenance, quality and reliability.
CO4	analyse and classify: software engineering paradigms, cost estimation
	models, design methodologies, testing techniques, maintenance process,
	reliability and quality models.
CO5	compare and select from amongst candidate: software engineering
	paradigms, cost estimation models, design methodologies, testing
	techniques, maintenance process, reliability and quality models.
CO6	design and develop simple software using the concepts, techniques and
	principles of software engineering.
	CO-PEO Mapping Matrix for Course MCA/GEN/1/CC3

COs	P	EO1		PEO	2	J	PEO3		PEC	D4	PE	O5	
CO1		1		3		3			3			3	
CO2	2 3					3			3		3		
CO3		3		3			3				3		
CO4		3		3			3		3			3	
CO5		3		3			3		3		3	3	
Average	,	2.4		3			3		3		3	3	
	CO-F	CO-PO Mapping Matrix for Course MCA/GEN/1/CC3											
COs	PO1												
CO1	1	3	1	1	1	-	3	2	1	-	2	-	
CO2	2	1	1	3	1	-	3	2	1	-	2	-	
CO3	3	1	1	3	3	-	3	2	1	-	2	-	
CO4	2	1	1	3	1	-	3	2	1	-	2	-	
CO5	2	1	3	3 1 3			3	2	1	-	2	-	
Average	2	1.4	1.4	2.2	1.8	-	3	2	1	-	2	-	
	CO-P	SO M	appin	g Matr	ix for	Cour	se MC	A/G	EN/1/C	C3	I		
COs	PS	O1		PSO2		F	SO3		PSO	D4	PS	O5	
CO1	3	3		3			3		1			_	
CO2	3	3		3			3		2			_	
CO3	3	3		3			3		3			-	
CO4	3	3		3			3		3			-	
CO5	3	3		3			3		3			-	
Average	3	3		3			3		2.	.4		-	
	Course Content MCA/GEN/1/CC3: Software Engineering												
Unit - I	softw	are e	nginee	ering p	aradig	ms, p	lannin	g a	softwar	e proj	ect, sof	vare crisis. Tware cost	
Unit - II Software requirement analysis: structured analysis, object-oriented analysis and data modeling, software requirement specification, validation. Software configuration management, quality assurance, project monitoring, risk management.													
Unit - III Design and implementation of software: software design fundamentals, structured design methodology and object-oriented design, design verification, monitoring													

	and control, coding. Software Reliability: metric and specification, fault avoidance and tolerance, exception handling, defensive programming.
Unit - IV	Testing: testing fundamentals, white box and black box testing, software testing strategies: unit testing, integration testing, validation testing, system testing, debugging. Software maintenance: maintenance characteristics, maintainability, maintenance tasks, maintenance side effects. CASE tools. agile development.
	Text/Reference Books
Text Books	 Mall, Rajib, Fundamentals of Software Engineering, PHI Learning Pvt. Ltd Aggarwal, K.K., and Singh, Yogesh, Software Engineering, New Age International Jalote, Pankaj, An Integrated Approach to Software Engineering, Narosa Publishing House.
Reference Books	3. Pressman, S. Roger, Software Engineering, Tata McGraw-Hill.

		MCA/C	GEN/1/CC4:	Operating	Syste	ms							
Course Type	Course	Contact	Delivery	Maximum Marks		Exam	Assessment						
	Credit	Hours/ Week	Mode	External	Internal			Internal		ıl	Duration	Methods	
Core Theory	04	04	Lecture	70		30		3 Hours	TEE/MTE/ Assignment/				
					20	5	5		Attendance				

Course Objectives: The objective of this course is to get the students familiar with fundamental concepts of operating systems, namely, types of operating systems, functions of memory management module, process management module, deadlock management and file protection, etc.

Course	At tl	he end	l of th	is cou	rse, th	e stud	ent wi	11 be a	able to):		
Outcomes												
CO1	inter	rproce	ss c	ommu	nicatio	on, d	leadloc	ck; ic	dentif			g system iques o
CO2	desc	allocation of memory, processor, and disk space. describe and discuss: the goals, functions and types of operating system, interprocess communication, deadlock management, techniques of allocation of memory, processor, and disk space.										
CO3	illus men	illustrate: the concepts of operating system like process scheduling, memory management, virtual memory, directory structure, disk space allocation, and process deadlocks.										
CO4	class	sify: o	perat	ing sy orithm	stems	s, dea sk scl	dlock nedulir	ng alg	gorith	ms, pa	ige rep	, proces blacemen
CO5	dete syste disk alloc	algorithms, directory structure, disk space allocation methods. determine and argue the suitability of a particular types of: operating system, deadlock management approach, process scheduling algorithm, disk scheduling algorithm, page replacement algorithm, disk space allocation method, directory structure, memory management, disk scheduling algorithm in a given situation.										
	CO-P	EO M	appin	g Matı	rix for	Cour	se MC	A/GE	N/1/C	C4		
COs	P	EO1	D1 PEO2				PEO3			PEO4		O5
CO1		1		3		1			3		3	
CO2		2		3			1		3		,	3
CO3		3		3		1			3		,	3
CO4		3		3			1		3		,	3
CO5		3		3			1		3		•	3
Average		2.4		3			1		3			3
	CO-I	PO Ma	apping	g Matr	ix for	Cours	e MCA	A/GEN	N/1/C(C 4		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	1	-	2	-	-
CO2	2	1	1	3	1	-	3	2	-	2	-	-
CO3	3	1	1	3	3	-	3	3	-	2	-	-
CO4	2	1	1	3	1	-	3	3	-	2	_	-
CO5	2	1	1 3 1 3 - 3 3 - 2 - -									
	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-
Average								<u> </u>				
Average	CO-P	SO M	appin	g Matı	ix for	Cour	se MC	A/GE	N/1/C	C4		

CO1	3	2	3	1	-
CO2	3	2	3	2	-
CO3	3	2	3	3	-
CO4	3	2	3	3	-
CO5	3	2	3	3	-
Average	3	2	3	2.4	-

	Course Content MCA/GEN/1/CC/4: Operating Systems
Unit - I	Introductory concepts: Operating system goals and functions, types of operating systems – batch operating system, multitasking operating system, time-sharing operating systems, real-time operating systems, distributed operating systems, system calls and their types, layered architecture of operating system; modules of kernel of operating system their functions.
Unit - II	Memory management: Functions of memory management module, memory allocation methods – contiguous and non-contiguous memory allocation; real and virtual memory allocation; fragmentation – internal and external, paging, segmentation, virtual memory concepts, demand paging, page replacement algorithms, thrashing, Belady's anomaly.
Unit - III	Process management: Process concept, PCB, Process switch and mode switch; system state and state space, state transition diagram; scheduling criteria, preemptive and non-preemptive scheduling, starvation and its mitigation, process scheduling algorithms, levels of scheduling, comparison of scheduling algorithms, inter-process communication, critical code section, mutual exclusion and its implementation, semaphore, hardware support for mutual exclusion.
Unit - IV	Deadlock - concept, conditions; deadlock management - prevention, avoidance, deadlock detection and recovery, practical considerations - ostrich approach; file - concept, file protection, file access control, file access methods; directory structure; disk space allocation; disk scheduling algorithms and their performance comparison.
	Text/Reference Books
Text Books	 Silberschatz A., Galvin P. B., Gagne G., Operating System Concepts, Wiley India Pvt. Ltd. ChauhanNaresh, Principles of Operating Systems, Oxford University Press. Tanenbaum A.S., Operating System- Design and Implementation, PHI Learning.
Reference Books	 Deitel H.M., Operating Systems, Pearson Education. Stallings William, Operating System, PHI Learning.

3. Godbole A.S., Operating Systems, Tata McGraw-Hill, New Delhi

MCA/GEN/1/CC5: Java and C#

157974 157974 15-7-21

Course Type	Course	Contact	Delivery	Maximu	m Marks	S	Exam	Assessment
	Credit	Hours/ Week	Mode	External	Internal		Duration	Methods
Compulsory Theory	04	04	Lecture	70	30		3 Hours	TEE/MTE/ Assignment/
					20 5	5		Attendance

Course Objectives: The objective of this course is to get the basic concepts and building blocks of Core Java and C#.Net programming languages using the modular approach which emphasizes on small programs. Learn how to write moderately complex programs efficiently. Learn making GUI-based applications in Core Java as well as C#.Net.

Course Outcomes	By the end	d of this course, th	e student will	able to:								
CO1	_	rogramming envi		* *								
	_	loops, arrays, programming approaches, threads in programming, file system for data storing, data structure library, graphical user interface										
G02		concepts. summarize: programming fundamentals, programming approaches,										
CO2												
		ded programming ibrary, GUI conce	-	ig using the	system, data							
CO3		sic programming	1	solve basic	mathematical							
	110	s, data structure o	-									
	-	dly interfaced pro			,							
CO4	_	: data types, p										
		, loops, single a			ning, various							
2.2.5		collection framew										
CO5		ata types, program	~ 11									
		methods, serial or concurrent programming, data structures supporting classes in collection framework.										
CO6		ograms using basi		ultithreading ar	nd GUI based							
	concepts.	grams asing oasi	e concepts, m	annin cading ai	ia dei ousea							
CO	O-PEO Map	ping Matrix for Co	ourse MCA/G	EN/1/CC5								
COs	PEO1	PEO2	PEO3	PEO4	PEO5							
CO1	1	3	3	3	3							
CO2	2	3	3	3	3							
CO3	3	3	3	3	3							
CO4	3	3	3	3	3							
CO5	3	3	3	3	3							
CO6	3											
Average	2.5	3	3	3	3							
C	O-PO Mapp	oing Matrix for Co	urse MCA/GE	CN/1/CC5								

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	_	3	1	_	_	_	_
CO2	2	1	1	3	1	_	3	2	_	_	_	_
CO3	3	1	1	3	3	_	3	3	_	_	_	-
CO4	3	3	1	3	1	_	3	3	_	_	_	-
CO5	3	1	3	1	3	_	3	3	_	_	_	-
CO6	3	3	3	3	3	-	3	3	-	-	_	-
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-
	CO-l	PSO M	apping	g Matr	ix for	Cours	e MCA	\/GEN	I/1/CC	5		
COs	PS	SO1		PSO	2		PSO3		PSC	04	PS	O5
CO1		3		1			1		1			_
CO2		3		2			2		2			-
CO3		3		3			3		3			-
CO4		3		3			3		3			_
CO5		3		3			3		3			-
CO6		3		3			3		3			-
Average	e 3 2.5 2.5 -											
Course Content MCA/GEN/1/CC5: Java and C#												
Unit - I		e types	, opera	itors ar	nd its t	ypes, d	lecisio	n contr	ols, co	-	-	a types, s, loops,
Unit - II		ors, Po	lymorp	ohism:	functi	on ove	erloadii	ng and	opera	tor ove		tructors, g in C#,
Unit - III		s, creati	ing sin	gle an	d mult	iple th	readed		_		_	sses and g, thread
Unit – IV	Workin Collecti framew I/O stre	on fra ork, list	mewor , set, n	k in nap.	Java a	and C	#: inte	erfaces	and	classes		ollection
			7	Text/R	eferen	ce Boo	ks					
Text Books	 Darrel Ince& Adam Freeman, Programming the Internet with Java, 2e, Addison Wesley. K.A. Mughal, R.W. Rasmussen, A Programmer's Guide to Java Certification, Addison Wesley. E. Balagurusamy, Programming with Java, 6e, Tata McGraw Hill. E. Balagurusamy, Programming in C# - A Primer, 4e, Tata McGraw Hill. 											
Reference Books	1. Herb				_						Hill.	

	MCA/GEN/1/CC6: Software Lab –Java											
7.1		Contact	Delivery	Maximu	m Marks	Exam	Assessment					
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods					
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File					

Instructions to paper setter for Final-Term Examination: The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated based on the practical file, performance in practical exam and a viva voce exam.

Course Objectives: The objective of this course is to get the students hands-on practice with Core Java programming concepts covered in course MCA/GEN/1/CC5.

programming concept	5 covered in co	uise WICA/GEN/I/C									
Course	By the end of	of this course, the s	tudent will able	e to:							
Outcomes		 									
CO1		gramming environ									
		arrays, programming approaches, threads in programming, file system									
	for data storing, data structure library, graphical user interface concepts. summarize: programming fundamentals, programming approaches,										
CO2		1 0									
		ed programming,		using file s	ystem, data						
		rary, GUI concepts									
CO3	11.	c programming of									
	operations,	data structure ope	erations, concur	rrent execution	of threads,						
	user friendl	y interfaced progra	ms.								
CO4		data types, progra									
	loops, sing	le and multithrea	aded programi	ming, various	classes in						
	collection fr	amework, GUI cor	itrols.								
CO5	choose: dat	choose: data types, programming approaches, branching and iteration									
	methods, se	methods, serial or concurrent programming, data structures supporting									
	classes in co	classes in collection framework.									
CO6	develop: pro	ograms using basic	concepts, mult	ithreading and	GUI based						
	concepts.										
	CO-PEO Map	ping Matrix for Co	ourse MCA/GEN	N/1/CC6							
COs	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	3	3	3	3						
CO2	2	3	3	3	3						
CO3	3	3	3	3	3						
CO4	3	3	3	3	3						
CO5	3 3 3 3										
CO6	3	3	3	3	3						
Average	2.5	3	3	3	3						

	CO-PO Mapping Matrix for Course MCA/GEN/1/CC6											
COs	PO1	PO2	PO3		PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2
CO1	1	3	1	1	1	-	3	1	-	-	-	-
CO2	2	1	1	3	1	-	3	2	-	-	-	-
CO3	3	1	1	3	3	-	3	3	-	-	-	-
CO4	3	3	1	3	1	-	3	3	-	-	-	-
CO5	3	1	3	1	3	-	3	3	-	-	-	-
CO6	3	3	3	3	3	-	3	3	-	-	-	-
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-
	CO-PS	O Ma	pping	Matri	x for (Course	MCA	/GEN/	'1/CC6	•		
COs	PS	O1		PSO2]	PSO3		PS	O4	PS	O5
CO1		3		1			1		1	[-	
CO2		3		2			2		2	2	-	
CO3		3		3			3		3	3	_	
CO4	3	3		3			3		3	3	-	
CO5	3	3		3			3		3	3	-	
CO6	3	3		3			3		3	3	-	
Average	(3		2.5			2.5		2.	.5	_	•

	MCA/GEN/1/CC7: Software Lab – C#											
Course Type	Course	Contact	Delivery	Maxim	ım Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File					

Instructions to paper setter for Final-Term Examination: The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the basis of practical file, performance in practical exam and a viva voce exam.

Course Objectives: The objective of this course is to get the students hands-on practice with C# programming concepts covered in course MCA/GEN/1/CC5.

Course	At the end of	of this course, the	student will be a	able to:								
Outcomes												
CO1	outline: pro	ogramming envir	onment, data	types, control	constructs,							
		loops, arrays, programming approaches, threads in programming, file										
	system for	system for data storing, data structure library, graphical user interface										
	concepts.	*										
CO2	summarize:		programming									
		multithreaded pro		a storing using	file system,							
		re library, GUI co										
CO3		c programming										
	_	data structure op		rrent execution	of threads,							
		y interfaced progr										
CO4	categorize: programming approaches, controls constructs, loops, single											
	and multithreaded programming, various classes in collection											
G0.5		framework, GUI controls. choose: programming approaches, branching and iteration methods,										
CO5												
	collection fi	ncurrent programi	ning, data struc	tures supporting	ig classes in							
CO6				thus ading and	CIII based							
006		ograms using basic	e concepts, mun	ithreading and	GUI based							
Average	concepts.											
Average	GO DEO M	. 35	N.C. I.O.	N. 14 16 6 5								
	CO-PEO Map	ping Matrix for C	ourse MCA/GE	N/1/CC7								
Cos	PEO1	PEO2	PEO3	PEO4	PEO5							
CO1	1 3 3 3 3											
CO2	2	2 3 3 3 3										
CO3	3	3	3	3	3							

G0.4	1			_							1		
CO4		3		3			3			3		3	
CO5		3		3			3			3		3	
CO6		3		3			3			3		3	
Average	j .	2.5		3			3			3	İ	3	
	CO-I	CO-PO Mapping Matrix for Co					e MCA	/GEN	/1/CC	7	1		
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	3	1	_	_	-	-	
CO2	2	1	1	3	1	-	3	2	_	-	-	-	
CO3	3	1	1	3	3	-	3	3	-	-	-	-	
CO4	3	3	1	3	1	-	3	3	-	-	-	-	
CO5	3	1	3	1	3	-	3	3	_	-	-	-	
CO6	3	3	3	3	3	-	3	3	-	-	-	-	
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-	
	CO-P	SO M	apping	g Matı	ix for	Cours	e MC	A/GEN	1/1/CC	7		ı	
COs	P	SO1		PSO	2		PSO3		PS	SO4	P	SO5	
CO1		3		1			1			1		-	
CO2		3		2			2			2		-	
CO3		3		3			3			3		-	
CO4		3		3			3			3		-	
CO5		3		3			3			3		-	
CO6		3		3			3		3		-		
Average		3		2.5			2.5		2	2.5		-	

	MCA/GEN/2/CC8: Data Structures											
Course Type	Course	Contact	J J J			ximum Marks			Maximum Mark		Exam	Assessment
	Credit	Hours/Week	Mode	External	rnal Internal			Duration	Methods			
Compulsory Theory	04	04	Lecture	70	30			3 Hours	TEE/MTE/ Assignment/At			
					20 5 5		5		tendance			

Course Objectives: The objective of this course is to get the students familiar with various types of data structure and different techniques to implement the data structures and their real-life applications.

Course Outcomes	At the end o	f this course, the st	tudent will be	able to:				
CO1	define: abst	lefine: abstract data types, algorithms, complexity of algorithms, linear						
	data structur	es, non-linear data	structures, sea	rching, sorting,	hashing.			
CO2		al examples of : d		• I '	1			
	techniques,	searching meth	ods, hashing	g and collision	on resolution			
	techniques.							
CO3		omplexity of algo						
		linear search, b						
		t, radix sort, shell		ort, quick sort, h	eap sort , hash			
		olve given probler						
CO4		: data structure, se	_		chniques, hash			
		nalyze: time and sp		·				
CO5		ne complexity of		•	·			
		rt, insertion sort,	·					
	heap sort, h	ash function and so	elect the best o	ne for given pro	oblem.			
	CO-PEO Ma	pping Matrix for C	ourse MCA/Gl	EN/2/CC8				
Cos	PEO1	PEO2	PEO3	PEO4	PEO5			
CO1	1	3	1	3	3			

CO2		2		3			1		2			2
CO2		2					1		3		3	
CO3		3		3			1		3		3	
CO4		3		3			1		3			3
CO5		3		3			1		3			3
Average	2	2.4		3			1		3			3
	CO-I	PO Ma	pping	Matrix	for	Course	MCA/	GEN/	2/CC8	;		
Cos	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12
CO1	1	3	1	1	1	_	3	-	-	-	-	-
CO2	2	1	1	3	1	-	3	-	-	-	-	-
CO3	3	1	1	3	3	-	3	-	-	-	-	-
CO4	2	1	1	3	1	-	3	-	-	-	-	-
CO5	2	1	3	1	3	-	3	-	-	-	-	-
Average	2	1.4	1.4	2.2	1.5	-	3	-	-	-	-	-
	CO-P	SO Ma	apping	Matri	x for	Course	e MCA	GEN	/2/CC	8	"	
Cos	PS	O1]	PSO2		P	SO3		PSC	04	PS	SO5
CO1	3	3		3			3		1			-
CO2	3	3		3			3		2			-
CO3	3	3		3			3		3			-
CO4	3	3		3			3		3			-
CO5	3	3		3			3		3			-
Average	3	3		3			3		2.	4		-
	•	M	CA/G			ontent Data S	tructu	res				
8	algorith	ms, tin	ne-spa	ce trad	e off	, mathe	ematical	l nota	tion ar	nd func	_	nalysis of symptotic y.
	Linear data structures: abstract data types, array-based implementation, Stack: operations and application of stacks. Queues: operation on queues, circular queue, priority queues and de-queue, linked list: implementation of linked list, header linked list for polynomial manipulation.											
	Non-linear data structures: Trees: binary tree, tree traversals, binary search tree, threaded binary tree, AVL tree, B-tree, B+ tree, heap and its applications, Huffman coding. Graph: representation of graphs, types of graph, graph traversals, topological sort, minimum spanning trees, Kruskal and Prim's algorithm, application of graphs.											
Unit – IV	Searchi	ng, sort	ing an	d hashi	ng teo	chnique	s:					

	Searching: linear search, binary search. Sorting: bubble sort, selection sort, insertion sort, radix sort, shell sort, merge sort, quick sort, heap sort, Hashing: hash functions, open addressing, chaining, rehashing.
	Text/Reference Books
Text Books	 Seymour Lipschutz, Data Structures, McGraw-Hill Book Company, Schaum's Outline series, NewYork (1986). Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, Pearson Education, 2002.
Reference Books	 Tanenbaum A.M., Langsam Y, Augenstien M.J., Data Structures using C & C++, Prentice Hall of India, 2002. SartajSahni, Data structures, Algorithms and Applications in C++, University Press (India) Pvt.Ltd, 2e, Universities Press Orient Longman Pvt. Ltd.

	MCA/GEN/2/CC9:Computer Graphics							
Course Type	Course	Contact	ontact Delivery Maximum Marks				Assessment	
	Credit	Hours/Week	Mode External I		Internal	Duration	Methods	
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance	

Course Objectives: Objective of this course is to make the students familiar with the basic concepts of Computer Graphics and the working of various graphic devices and their applications.

~	1					1		• • •				1
Course	At th	At the end of this course, the student will be able to:										
Outcomes	1											
CO1	com	puter de	evices	use in c	comp	ft copy outer grap n, 3D tra	phics .	, 2D g	raphi	cs, 3D	graphi	
CO2	coor DDA posit line proje	describe: computer graphic application, random scan, raster scan, coordinate system, homogeneous coordinate system, scan conversion, DDA, Bresenham line drawing algorithm, 2D and 3D transformation, positioning, pointing, rubber band techniques, clipping operation on line, polygon clipping, hidden surface removal, parallel and perspective projection, shading.										
CO3	proje	ection.				ring, cl						
CO4		categorize: scan conversion methods, projection techniques, clipping algorithms, shading methods.										
CO5		_				onversionethods.	on me	thods	, proj	ection	techni	ques,
	CO-P	EO Ma	pping l	Matrix	for C	ourse M	CA/G	EN/2/	CC9			
Cos	P	EO1		PEO2			PEO3		PEO4		PEO5	
CO1		1		3		1			3		3	
CO2		2		3		1			3		3	
CO3		3		3		1			3		3	
CO4		3		3		1			3		3	
CO5	Ì	3 1 3 3										
Average		2.4		3		1			3		3	
	CO-l	PO Map	ping N	Aatrix f	or Co	urse Mo	CA/GI	EN/2/	C C9			
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

CO1		1	3	1	1	1	-	3	-	-	-	-	-
CO2		2	1	1	3	1	-	3	-	-	-	-	_
CO3		3	1	1	3	3	-	3	-	-	-	-	-
CO4		2	1	1	3	1	-	3	-	-	-	-	-
CO5		2	1	3	1	3	-	3	-	-	-	-	-
Averag	ge	2	1.4	1.4	2.2	1.5	-	3	-	-	-	-	-
	(CO-P	SO Ma	pping l	Matrix	for Co	ırse M	CA/G	EN/2/	CC9			
Cos		PS	SO1		PSO2		PSO3		P	SO4		PSO	5
CO1			3		1		3			1		-	
CO2			3		1		3			2		-	
CO3			3		1		3			3		-	
CO4			3		1		3			3		-	
CO5			3		1		3			3		-	
Averag	ge		3		1		3			2.4		-	
					Course	e Conte	nt						
			MCA	A/GEN	/2/CC9			raphi	cs				
Unit - II	graphics; system-rebeam per monitors. Drawing system; Scan congeneration 2-D Tran- panning; tweezing	geon netration, LCE geon nversion of ensform input	CRTs, ion shad monitor metry: on: symplellipse; nations:	raster dow m ors, VG coordin metrica transla	scan a ask more and S nate systal DDA attion; ro	nd rand nitors, SVGA r stem, r , simple tation;	lom scaling:	an mo table on; har on, us Brese	onitors s, pla rd cop se of enham	s grey sma pa y device homo a's line	shade anel, L ces-pri ogeneone draws ; shear	s, Interpretations, ED and Inters, purpose cooling algorithms.	rlacing, d LCD lotters rdinate orithm, oming;
Unit - III Unit - IV	Graphic operations: clipping-line clipping using Sutherland-Cohen and midpoint sub-division algorithm, polygon clipping; window and view port; windowing transformation; filling-stack based fill algorithm; Multimedia: concepts of hypertext/hypermedia; multimedia applications; multimedia authoring; multimedia hardware; images; bitmaps; windows paint brush. 3-D Graphics: 3D modeling of objects; 3D display techniques; coordinate system; 3D												
Omt - 1V	transformation matrices for translation, scaling and rotation; parallel projection; perspective projection; hidden surface removal, z-buffer, back face, scan line, depth sorting, area subdivision; shading- modeling light intensities, gourand shading, phong shading.												
	Text/Reference Books												
Text Books.	1. Donald 2. Newm						_	_			IcGraw	/ Hill.	

Reference	1.John F. KoegelBufore, Multimedia Systems, Addison Wesley.
Books	2. Foley, Computer Graphics Principles & Practice, Addison Wesley.
	3. Rogers, Procedural elements of Computer Graphics, McGraw Hill.
	4. D.P. Mukherjee, Fundamentals of computer Graphics and Multimedia, PHI.

	MCA/GEN/2/CC10: Database Systems								
Course Type			Delivery	Maximu	m Marks	Exam	Assessment		
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods		
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance		

Course Objectives: The objective of this course is to get the students familiar with the concepts, models, architecture and applications of database systems.

models, architecture and	а аррпе	- Company	or datao	ase syst	CIIID.							
Course Outcomes	At the	e end o	f this c	ourse,	the stu	dent wi	11 b	e able to	o:			
CO1	1	define: schema architecture, ER diagrams, EER model,, functional										
	_							views i				-
			-		ise seci	urity is:	sues	s, semai	ntic d	ata m	odels	, and
200			archite									
CO2	1		_					, EEI				
			es, nor	mal fo	rms, S	SQL co	onst	raints a	and v	news,	reco	overy
CO3	algori		:4	COI ~			.:					
								s, recov				
CO4		entiate		class	and depend	super dencies		class, rmal for		ializa	tion	and
CO5								ecovery		niaue	and	data
						fferent				mqu	diid	aata
(О-РО	Mappii	ng Mati	rix for	Course	MCA/	GE	N/2/CC1	10			
Cos												2
	P01	PO2	PO3	P04	PO5	P06	PO7	P08	P09	PO10	PO1	PO12
	ш	Щ	H	Щ	Н	Щ	П	Н	Щ	Ь	Ь	Ь
CO1	1	3	1	1	1	-	3	-	-	2	-	-
CO2	2	1	1	3	1	-	3	-	-	2	-	-
CO3	3	1	1	3	3	-	3		-	2	-	-
CO4	2	1	1	3	1	-	3	-	-	2	-	-
CO5	2	1	3	1	3	-	3	-	-	2	-	-
Average	2	1.4	1.4	2.2	1.5	-	3	-	-	2	-	-
C	O-PSO	Mappi	ing Mat	trix for	Cours	e MCA	/GE	N/2/CC	10			
Cos	PS	O1	PS	SO2	-	PSO3		PSC	04		PSO	5
CO1	3 3				3		1			-		
CO2	3	3				3		2		İ	-	
CO3	3	3		3		3		3			-	

					1			
CO4	3	3	3	3	-			
CO5	3	3	3	3	-			
Average	3	3	3 3		-			
	CO-PEO Mapp	oing Matrix for	Course MCA/G	EN/2/CC10				
COs	PEO1	PEO2	PEO3	PEO4	PEO5			
CO1	1	3	1	3	3			
CO2	2	3	1	3	3			
CO3	3	3	1	3	3			
CO4	3	3	1	3	3			
CO5	3	3	1	3	3			
Average	2.4	3	1	3	3			
Unit I			Database System		characteristics of			
Unit I	MCA/GEN/2/CC10: Database Systems Basic concepts: a historical perspective, file system vs. DBMS, characteristics of the database approach, abstraction and data integration, database users, advantages and disadvantages of a DBMS, implication of database approach. Database system concepts and architecture- data models, schemas and instances,							
	DBMS architec DBMS functions		_	atabase languag	es & interfaces,			
Unit - II	relationship typ types, E-R diagr Conventional da	es, roles and s ams, design of a ta models- an o model- relation	structural constra an E-R database s overview of netwonal model conc	ints, design iss chema. ork and hierarch	eys, relationships, ues, weak entity ical data models. constraints over			
Unit – III	SQL: data definition, constraints, & schema changes in SQL, insert, delete & update statements in SQL, view in SQL, specifying constraints and indexes in SQL, queries in SQL. ORACLE — a historical perspective, basic structure, database structure and its manipulation in Oracle, storage organization in Oracle programming, Oracle applications. Relational database design: functional dependencies, decomposition, desirable properties of decomposition, normal forms based on primary keys (1 NF, 2 NF, 3 NF and BC NF). Practical database design: role of information systems in organizations, database design process, physical database design in relational databases.							
Unit – IV	Transaction processing concepts: introduction to transaction processing, transaction & system concepts, properties of transaction, schemes and recoverability, serializability of schedules.							

	Concurrency control techniques: locking techniques, timestamp ordering, multiversion techniques, optimistic techniques. Recovery techniques: recovery concepts, recovery techniques in centralized DBMS. database security: introduction to database security issues.								
	Text/Reference Books								
Text Books	 Elmasri&Navathe, Fundamentals of Database System, 3e, Addison Wesley, New Delhi. Korth&Silberschatz, Database System Concept, 4e, McGraw Hill International Edition. 								
Reference Books	 C.J. Date, An Introduction to Database System 7e, Addison Western, New Delhi. Abbey Abramson & Cory, ORACLE SI-A Beginner's Guide, Tata McGraw Hill Publishing Company Ltd. 								

	MCA/GEN/2/CC11: Artificial Intelligence											
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment					
	Credit	Hours/Week Mode		External	Internal	Duration	Methods					
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance					

Course Objectives: The objective of this course is to provide understanding of Artificial Intelligence techniques and their applications. Various search techniques and expert systems along with other components of artificial intelligence in computer science will be covered.

Course Outcomes	At the end of this course, the student will be able to:											
CO1	define: artificial intelligence terms, types of search strategy, production system,											
	knowledge representation, learning techniques and genetic algorithm terminologie											
CO2	explain: the types and properties of search algorithm, predicate calculus,											
	knowledge representation and explore the theories that demonstrate intell	igent										
	behavior including intelligent editor, learning by induction and dealing w	ith										
	uncertainty.											
CO3	use: search strategy/genetic algorithm/ fuzzy logic and learning technique.											
CO4	classify types of: search strategy, production system, learning, operator of gene	tic										
	algorithm, knowledge representation and approaches that deals with uncertainty											
CO5	compare and select types of: search strategy, production system, learning, operagenetic algorithm, knowledge representation and approaches that deals with uncertainty.	tor of										
C	O-PEO Mapping Matrix for Course MCA/GEN/2/CC11											
Cos	DEO1 DEO2 DEO2 DEO4 DEO5											

CO-PEO Mapping Matrix for Course MCA/GEN/2/CC11												
PEO1	PEO2	PEO3	PEO4	PEO5								
1	3	1	3	3								
2	3	1	3	3								
3	3	1	3	3								
3	3	1	3	3								
3	3	1	3	3								
2.4	3	1	3	3								
	PEO1 1 2 3 3 3	PEO1 PEO2 1 3 2 3 3 3 3 3 3 3 3 3	PEO1 PEO2 PEO3 1 3 1 2 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1	1 3 1 3 2 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3								

Average		2.4		3			1		3		3	
	CO-PO Mapping Matrix for Course MCA/GEN/2/CC11											
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	60d	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	-	ı	2	-	-
CO2	2	1	1	3	1	-	3	-	-	2	-	-
CO3	3	1	1	3	3	-	3	-	-	2	-	-
CO4	2	1	1	3	1	-	3	-	-	2	-	-

CO5	2	1	3	1	3	-	3	-	-	2	_	-
Average	2	1.4	1.4	2.2	1.5	-	3	-	-	2	-	-
	CO-PS	O Maj	ping	Matri	x for C	ourse	MCA	/GEN/2	./CC11	ĺ	ı	
Cos	PS	SO1		PSO2		PS	О3		PSO4	-	PS	O5
CO1		3		1			3		1			-
CO2		3		1			3		2			-
CO3		3 3 -										
CO4		3		1		3	3		3			-
CO5		3		1		<u> </u>	3		3			-
Average		3		1		3	3		2.4			-
Course Content MCA/GEN/2/CC11: Artificial Intelligence												
Unit – I Introduction: background and history, overview of AI applications areas. The predicate calculus: syntax and semantic for propositional logic and FOPL, clausal form, inference rules, resolution and unification. Knowledge representation: network representation, associative network & conceptual graphs, structured representation, frames & scripts.												
Unit – II	search Search iterativ mini-r	, n algor we deep nax et	ithms: pening c.), c	uninfo and i	ormed nforme ational	search ed sear	(depth ch (hil lexity,	n-first, b l climb prope	oreadth ing, be	ı-first, est first	depth-f	irst with gorithm, orithms,
Unit - III	comm product Rule-b in ex- algebr	utative etion sy pased e pert sy a, non	processes proces	duction, contraction, system a, Bay tonic	n systems: arc resian logic	tems, earch in hitectu probab and	decorn produced produ	nposabl uction s evelopn	e and systems nent, Stanf with	d nors. manag ord o	n-decon ing und certainty	nd non- nposable certainty y factor y logic,
Unit – IV	editors Genet	s, learn ic algo	ing by orithm	induc s: pro	tion. oblem		entatio	on, enc				telligent perators:
			T	ext/Re	eferenc	e Bool	KS					
Text Books	 George F. Luger, Artificial Intelligence, Pearson Education. Dan W. Patterson Introduction to Artificial Intelligence and Expert system, PHI. 											
Reference Books	Add 2. Wil	lison V s J. Nil	Vesley. sson, l	Princip	oles of	Artifici	al Inte	roductions, 3e,	e, Naro	osa Pul	olishing	

Me	MCA/GEN/2/CC12: Web Development using Servlet, JSP and ASP.NET											
Course Type	Course	m Marks	Exam	Assessment								
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods					
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/					
					20 5 5		Attendance					

Course Objectives: To illustrate the basic concepts and building blocks of Servlet, JSP and ASP.Net language programming using the tire architecture approach. Learn how to write moderately complex programs efficiently. Learn making Web-based application in Servlet, JSP as well as ASP.Net

Course Outcomes	At the end of this course, the student will able to:											
CO1		outline: basic html tags, cascading style sheet, javascript										
		fundamentals, server side programming concepts: jsp, servlet, asp.net,										
	secure socke	secure socket layer, cookies, java mail, master pages, site navigation.										
CO2	-	nl tags, javascript c	•		•							
	1 0	s, secure connect	_		controls in							
	-	ter pages, site navi	•									
CO3		tags, css, javascr	_		et concepts,							
		ection importance,		<u> </u>								
CO4	_	static and dynami	1 0									
	1 0	g, server types, g			let and jsp							
~~~		rogramming, jap and asp.net platform, asp.net controls;										
CO5		choose: static or dynamic pages, client side or server side										
	1 0	g, server types,		•								
7.2.5		g, jap or asp.net pla										
CO6	_	ple application us	ing javascript	, html, jsp,	servlet and							
	asp.net.											
CO	-PEO Mappir	ng Matrix for Cours	e MCA/GEN/2	2/CC12								
Cos	PEO1	PEO2	PEO3	PEO4	PEO5							
CO1	1	3	3	3	3							
CO2	2	2 3 3 3										
CO3	3	3 3 3 3										
CO4	3	3	3	3	3							





COT		2			2	ī		2		2		2
CO5		3			3			3		3		3
CO6		3			3			3		3		3
Average		2.5			3		•	3		3		3
	CO-	PO Ma	pping	Matri	x for (	Course	MCA	GEN/2	/CC12	2		
Cos	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	1	-	-	-	-
CO2	2	1	1	3	1	-	3	2	-	-	-	-
CO3	3	1	1	3	3	-	3	3	-	-	-	-
CO4	3	3	1	3	1	-	3	3	-	-	-	-
CO5	3	1	3	1	3	-	3	3	-	-	-	-
CO6	3	3	3	3	3	-	3	3	-	-	-	-
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-
	CO-F	SO Ma	pping	Matri	x for	Course	MCA	/GEN/2	2/CC1	2	ı	'
Cos	-	PSO1		PS	O2		PSO	3	PS	SO4	PS	O5
CO1		3		-	1		1			1		-
CO2		3		2	2		2			2		-
CO3		3		3	3		3			3		-
CO4		3		3	3		3			3		-
CO5		3		3	3		3			3		-
CO6		3		3	3		3			3		-
Average		3		2	.5		2.5		2	2.5		-
						ontent						
	/GEN/2											
Unit - I	Founda style sh function	neet, jav	a scri	pt fund	lamen	tals (da	ata typ	f html, es, con				
Unit - II	Working with servlet: introduction to servlet, life cycle of servlet, supporting classes for servlet programming, use HTTP GET and POST methods, Request and response objects, data validation in servlet, working with web.xml.											
Unit - III	JavaBea (creation	ans, intr	oducti v, dele	on to s te), usi	ession ng Jav	trackii aMail,	ng and introd	how it uction to	works,	workin	g with	gs with cookies r(SSL),
Unit – IV	Workin	g with	ASP	.Net:	introd	uction,	visua	ıl studi	o env	rironme	nt, wel	o form





	structure(container and components- textbox, list box, combo box, buttons, pictures), user and server controls, basic client side script, Working with master page, site navigation, asp.net security model and its types, forms authentication and its types.
	Text/Reference Books
Text Books	<ol> <li>Scott Guelich, Shishir Gundavaram, Gunther Birznieks, CGI Programming with Perl, 2e, O'Reilly.</li> <li>William J. Pardi, XML in Action, Web Technology, Microsoft Press.</li> <li>Aaron Weiss, Rebecca Taply, Kim Daniels, Stuven Mulder, Jeff Kaneshki, Web Authoring Desk Reference, BPB Publication.</li> <li>E. Balagurusamy, Programming in C#, 4e, Tata McGraw Hill.</li> <li>Herbert Schildt, C#: A Beginner's Guide, Tata McGraw Hill</li> <li>Jon Galloway, Professional ASP.NET Core 2.0, Wrox Publication.</li> </ol>
Reference Books	<ol> <li>Thomas A Powell, HTML-The Complete Reference, 3e, Tata McGraw Hill.</li> <li>Jeffery R. Shapiro, The Complete Reference Visual Basic.NET, Tata McGraw Hill</li> <li>V.P. Jain, The Complete Guide to C # Programming, Dreamtech Press.</li> <li>Methew Macdonald, The Complete Reference ASP.NET, Osborne TMH.</li> </ol>





MO	MCA/GEN/2/CC13 Software Lab: Web Development using Servlet, JSP											
Course Type	• •		Delivery	Maxim	ım Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File					

**Instructions to paper setter for Final-Term Examination:** The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated based on practical file, performance in practical exam and a viva voce exam.

**Course Objectives:** The objective of this course is to get the students hands-on practice with J2EE programming concepts covered in course MCA/GEN/2/CC12.

Course	At the end of thi	is course, the stu	ıdent will be a	able to:						
Outcomes	,									
CO1		outline: basic html tags, cascading style sheet, javascript fundamentals,								
	cookies, java m	server side programming concepts: jsp, servlet, secure socket layer, cookies, java mail.								
CO2	explain: tags in				et life cycle,					
	java server page	s, secure conne	ction using SS	SL, cookies.						
CO3		apply: html tags, css, javascript, servlet, jsp concepts, secure connection, cookies in web programs.								
CO4	categorize: stat	categorize: static and dynamic pages, client side and server side								
	programming,	server types,	get post m	nethods, servl	et and jsp					
	programming;									
CO5	choose: static or				· ·					
	server types, get									
CO6	develop: web ap	plication using	javascript, htr	nl, jsp, servlet.						
	CO-PEO Mapping	Matrix for Cou	rse MCA/GEN	N/2/CC13						
Cos	PEO1	PEO2	PEO3	PEO4	PEO5					
CO1	1	1 3 3 3								
CO2	2	3	3	3	3					





CO3		3			3		3			3		3
CO4		3		<u> </u>	3		3			3		3
CO5		3			3		3		3			3
CO6		3			3		3			3		3
Average		2.5			3		3			3		3
Tivelage			nnina	 Motri		Our	se MCA	/CFN	/2/CC1			3
Cos		O Mia 	 	 	x 101 ( 	Jours 		/GEN/	<b>2</b> /CC1		I	
Cos	PO1	PO2	PO3	PO4	PO5	90d	PO7	PO8	P09	PO10	PO11	P012
CO1	1	3	1	1	1	-	3	1	-	-	-	-
CO2	2	1	1	3	1	-	3	2	-	-	-	-
CO3	3	1	1	3	3	-	3	3	-	-	-	-
CO4	3	3	1	3	1	-	3	3	-	-	_	-
CO5	3	1	3	1	3	-	3	3	-	-	-	-
CO6	3	3	3	3	3	-	3	3	-	-	-	-
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-
	CO-F	SO Ma	apping	Matr	ix for	Cour	se MCA	\/GEN	/2/CC	13		
Cos		PSO1		PS	SO2		PSO3		P	SO4	P	SO5
CO1		3			1		1			1		-
CO2		3			2		2			2		-
CO3		3			3		3			3		-
CO4		3			3		3			3		-
CO5		3			3		3		3			-
CO6		3			3		3		3			-
Average		3			2.5		2.5			2.5		-





MCA/GEN/2/CC14 Software Lab: Web Development using ASP[dot]NET								
Course Type	71		Delivery	Maximum Marks		Exam	Assessment	
	Credit	Hours/Week	s/Week Mode		Internal	Duration	n Methods	
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Attendance/ Practical File	

**Instructions to paper setter for Final-Term Examination:** The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated based on practical file, performance in practical exam and a viva voce exam.

Course Objectives: The objective of this course is to get the students hands-on practice with ASP[dot]NET programming concepts covered in course MCA/GEN/2/CC12.

Course Objectives	At the end of this course, the student will be able to:
CO1	outline: basic html tags, cascading style sheet, javascript fundamentals, server side programming concepts, asp.net, secure socket layer, cookies, master pages, site navigation.
CO2	explain: tags in html, concepts of javascripts, secure connection using SSL, cookies working, visual studio environment, asp.net security model, controls in asp.net, master pages, site navigation.
CO3	apply: html, asp.net concepts controls in designing web pages.
CO4	categorize: static and dynamic pages, client side and server side programming, server types, get post methods, asp.net controls, security models.
CO5	choose: static or dynamic pages, client side or server side programming,





	ser	server types, get or post method, asp.net controls, forms authentication.											
CO6		application using javascript, html, asp.net.											
CO-PEO Mapping Matrix for Course MCA/GEN/2/CC14													
Cos		PEO1		PEO2			PEO3		PEO4		PI	PEO5	
CO1		1		3			3		3		3		
CO2		2		3			3		3			3	
CO3		3		3			3		3			3	
CO4		3		3			3		3		3		
CO5		3		3			3		3			3	
CO6		3		3			3		3		3		
Average		2.5		3			3		3		3		
CO-PO Mapping Matrix for Course MCA/GEN/2/CC14													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	3	1	-	-	_	-	
CO2	2	1	1	3	1	-	3	2	-	-	-	-	
CO3	3	1	1	3	3	-	3	3	-	-	-	-	
CO4	3	3	1	3	1	-	3	3	-	-	-	-	
CO5	3	1	3	1	3	-	3	3	-	-	_	-	
CO6	3	3	3	3	3	-	3	3	-	-	_	-	
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-	
CO-PSO Mapping Matrix for Course MCA/GEN/2/CC14													
Cos	PSO1			PSO2			PSO3		PSO4		PSO5		
CO1		3		1			1		1		-		
CO2		3		2			2		2		-		
CO3		3		3			3		3		-		
CO4		3		3			3		3		-		
CO5		3		3			3		3			-	
CO6		3		3			3		3		-		
Average	3			2.5			2.5		2.5			-	





MCA/GEN/3/CC15: Web Development								
Course Type	Course	Contact Delivery		Maximum Marks		Exam	Assessment	
	Credit	Hours/Week	ırs/Week Mode		Internal	Duration	Methods	
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance	

**Course Objectives**: The objective of this course is to get the students familiar with different concepts related with information architecture, HTML5 and XML for web development.

<b>Course Outcomes</b>	At the end of this course, the student will be able to:						
CO1	outline: information architecture, role of architect, collaboration, organizing information, navigation design, designing search interface, indexing, grouping content, conceptual design, html tags, layouts, basics of xml, html5 fundamentals.						





CO2						nitectur						
		_	_			, navi	_		_	_	_	
						g conte			tual c	iesign	, html	tags,
CO3		ayouts, basics of xml, html5 fundamentals.  llustrate: web application navigation, design architecture, html tags,										
		audio support in browser, style sheets, form controls, features &										
		ructure of XML, relationship between html, sgml and xml, overview										
		of html5.										
CO4	categ	orize:	info	rmation	ı sys	stem,	naviga	ation	syste	em,	organiz	zation
	syste	m, dif	ferent	elemen	nts of	f html a	and x	ml, vi	ideo 1	format	and b	
						cts, gen						
CO5						stem,						
						f html						inary
COC						cts, gen						`1.
CO6	servi		appi	ication	s usi	ng htm	n and	ı xmı	, aev	eropm	ieni oi	web
	l		M	. 4	· · · Co	a M		CN1/2/4	0015			
	CO-PEO Mapping Matrix for Course MCA/GEN/3/CC15											
Cos	PH	EO1	Ï	PEO2		PEC	)3		PEO4	ļ	PEO5	
CO1		1		3		3			3		3	
CO2		2		3		3			3		3	
CO3		3		3		3			3			3
CO4		3		3		3			3			3
CO5		3		3		3			3		3	
CO6		3		3		3			3			3
Average	2	2.5		3		3			3			3
C	Ю-РО	Mappi	ing Ma	atrix fo	r Cou	rse MC	A/GE	N/3/C	CC15			
COs												
	P01	PO2	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12
	Ъ	Ь	Ь	Ь	Ь	Ъ	Ъ	Ь	Ь	P(	P(	P(
CO1	1	3	1	1	1		3	1	_	_	_	_
CO2	2	1	1	3	1		3	2				
CO2	Δ	1	1	3	1		3		-	_		_
CO3	3	1	1	3	3	-	3	3	-	-	-	-
CO4	3	3	1	3	1	-	3	3	-	-	-	-
CO5	3	1	3	3 1 3 - 3 3						-	-	
CO6	3	3	3	3	3	-	3	3	-	-	-	-
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-





CO-PSO Mapping Matrix for Course MCA/GEN/3/CC15									
Cos	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	3	1	1	1	-				
CO2	3	2	2	2	-				
CO3	3 3 -								
CO4	3 3 3 -								
CO5	3	3	3	3	-				
CO6	3	3	3	3	-				
Average	3	2.5	2.5	2.5	-				
	MCA	Course Co GEN/3/CC15: V		nt					
Onit-1	Unit-I Information architecture: the role of information architect, collaboration and communication, organization information, organizational challenges organizing web sites and intranets, creating cohesive organization systems designing navigation systems, types of navigation systems, integrate navigation elements, remote navigation elements, designing elegant navigation systems, searching your web site, designing the search interface, indexing the right stuff, to search or not to search, grouping content, conceptual design high-level architecture blueprints, architectural page markups, design sketches.								
Unit - II	buttons, intro tables, advar support in positioning v	oduction to layout need layout: fram browsers, video with style sheets.	t: backgrounds, of es and layers, ht of support, othe	colors and text, f ml and other mar r binary forma	ssues, images as fonts, layout with edia types. audio at. style sheets, d emerging form				
Unit - III	Unit - III  XML: Introduction of XML, features of XML, structure of XML document, the XML declaration, element tags nesting and structure, XML text and text formatting element, table element, mark-up element and attributes, document type definition (DTD), types. XML objects.  XML relationship between HTML, SGML, and XML, basic XML, valid documents. ways to use XML, XML for data files, embedding XML into HTML documents, converting XML to HTML as XML, the future of XML.								
Unit - IV	technologies exploring ed HTML doc document, he Fundamenta	, HTML5 and its itors and browse ument, validatin osting web pages. Is of HTML: ur	essentials, next rs supported by g an HTML aderstanding ele	generation of w HTML5, creating document, view ments- root ele	internet and web web development, ing and saving an wing an HTML ements, metadata ements, phrasing				





	elements, embedded elements, interactive elements, describing data types-RFC and IANA documentations, W3C specifications, immediate solutions.							
	Text/Reference Books							
Text Books	<ol> <li>Steven Holzner,"HTML Black Book", Dreamtech Press India Pvt. Ltd. 2000.</li> <li>Savaliya, Developing Web Applications, 2e, Wiley India Ltd</li> <li>Web Technologies - Black Book, Dreamtech Press India Pvt. Ltd.</li> </ol>							
Reference Books	<ol> <li>Web Technologies: HTML, JAVASCRIPT, PHP, JAVA, JSP, ASP.NET, XML and Ajax, Black Book by Kogent, Wiley India Ltd.</li> <li>P.J. Deitel&amp; H.M. Deitel, Internet and World Wide Web How to program, Pearson.</li> </ol>							

	MCA/GEN/3/CC16: IoT& Cloud Computing										
Course Type	Course	Contact	Delivery	Maximum Ma		•		Maximum Marks			Assessment
	Credit	Hours/Week	Mode	External	Int	erna	ıl	Duration	Methods		
Compulsory Theory	04	04	Lecture	70	20	30		3 Hours	TEE/MTE/ Assignment/ Attendance		

**Instructions to paper setter for Final-Term Examination:** The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2





marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

**Course Objectives:** To study the fundamental concepts of cloud computing, its enabling technologies, cloud service models and security concerns, to learn core issues of Internet of Things, IOT communication protocols and security concerns.

Course	At the	end of	this co	urse, th	e stude	nt will	be able	to:				
Outcomes CO1	applica		princip	nework les of w	veb con		ty.			inicatio		allenges models
				•	_		enges ar			ung, s	CI VICC	modeli
CO2	unders	understand and describe IoT: framework, architecture, design, communication										
		challenges, applications, principles of web connectivity.										
		understand and describe cloud computing: evolution, characteristics, working, service models, virtualization, architecture, security challenges and risks.										
CO3							fields o					
CO4							ure, phy				gn.	
							nodels,					
CO5	_	_				challe	enges, se	ecurity	issues,	enablin	g tech	nologies
	application areas, and protocols. grade/compare cloud computing: service models. virtualization, and hypervisors.											
CO-PEO Mapping Matrix for Course MCA/GEN/3/CC16												
COs	1	PEO1	upp		PEO2	Cour		PEO3	(1 <b>0</b> 100	PEO4	l P	EO5
CO1		1	3 1				3		3			
CO2		2			3			1		3		3
CO3		3		3			1		3		3	
CO4		3			3			1		3		3
CO5		3			3			1		3		3
Average		2.4			3			1		3		3
	C	O-PO	Mappi	ng Ma	trix for	Cours	se MCA	\/GEN	/3/CC1	6		
COs	PO1	PO2	P03	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	1	   -	2	-	_
CO2	2	1	1	3	1	-	3	2	_	2	-	-
CO3	3	1	1	3	3	-	3	3	_	2	-	-
CO4	2	1	1	3	1	-	3	3	-	2	-	-
CO5	2	1	3	1	3	-	3	3	_	2	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-
	1	T	ļ	l	l	I	l	1	1	l	1	1





COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	-
CO2	3	3	3	2	-
CO3	3	3	3	3	-
CO4	3	3	3	3	-
CO5	3	3	3	3	-
Average	3	3	3	2.4	-

Course Content
MCA/GEN/3/CC16: IoT& Cloud Computing

	MCA/GEN/3/CC16: IoT& Cloud Computing
Unit - I	Internet of Things: what is the IOT and why is it important, IoT conceptual framework, IoT architectural view, technology behind IoT, sources of IoT, examples of IoT, M2M communication, layered architecture (3 & 5 Layered) of IoT, physical design and logical design, domain-specific IoTs, security issues of IoT.
Unit - II	Communication challenges related to IoT, enabling technologies for IoT.  Applications of IoT: home automation, smart cities, social life and entertainment, health & fitness, smart environment and agriculture, supply chain and logistics, energy conservation.  Design principles for web connectivity: web communication protocols for connected devices, message communication protocols for connected devices.
Unit - III	Introduction to cloud computing: what is a cloud, definition of cloud computing, evolution of cloud computing, characteristics of cloud computing, how cloud computing works, role of networks in cloud computing.  Service models: IaaS, PaaS, SaaS, public, private and hybrid cloud.
Unit - IV	Introduction to virtualization, resource virtualization-server, storage, network, load balancing and virtualization.  Hypervisors and its types, service oriented architecture (SOA), overview of security issues, challenges and risks of cloud.
	Text/Reference Books
Text Books	<ol> <li>Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing a Practical Approach, Tata McGraw Hill, New Delhi, 2010</li> <li>Robert Elsenpeter, Toby J. Velte, Anthony T. Velte, Cloud Computing: A Practical Approach, 1e, Tata McGraw Hill Education, 2011.</li> <li>Judith Hurwitz, Robin Bloor, Marcia Kaufman, Fern Halper, Cloud Computing for Dummies, Wiley Publishing, 2010</li> </ol>
Reference Books	<ol> <li>RajkumarBuyya, James Broberg, AndrzejGoscinski, Cloud Computing-Principles and Paradigms, Wiley, 2011.</li> <li>Raj Kamal, Internet of Things-Architectures and Design Principles, McGraw Hill Education, 2017</li> </ol>

# MCA/GEN/3/DSC1(i): Linux and Shell Scripts

Course Type	Course	Contact	Delivery	Maximum Marks		Exam	Assessment
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods





Optional	04	04	Lecture	70	30		3 Hours	TEE/MTE/	
Theory					20	5	5		Assignment/ Attendance

**Instructions to paper setter for Final-Term Examination:** The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

**Course Objectives**: The objectives of this course are to provide the in-depth coverage of various concepts of Linux. Linux administration is an essential course for the students.

Course Outcomes	At the end of this course, the student will be able to:
CO1	define and outline: basic requirements, features, essential commands of Linux, vi editors, processes scheduling, communication commands, simple (grep, sed) and advanced filters (awk, perl).
CO2	explain: the organization, file system, Shells, file permissions, priorities, processes, communication commands in Linux and operations performed by the simple as well as advanced filters.
CO3	perform: operations in Linux, modes of operations in vi, mailing communication, regular expressions along with the simple and advanced filters.
CO4	categorize: the Linux commands, processes, priorities, communication commands, simple and advanced filters using regular expressions.
CO5	compare: shells, file permissions, processes, command with different options, simple filters like grep, sed and advanced filters like awk, perl.
CO6	create: Linux shell scripts showing the use of commands, regular expressions and filters.

#### **CO-PEO Mapping Matrix for Course MCA/GEN/3/DSC1(a)**

COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3
CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
CO6	3	3	1	3	3
Average	3	3	1	3	3

CO-PO Mapping Matrix for Course MCA/GEN/3/DSC1(a)												
COs	PO1	PO2	PO3	PO4	PO5	90d	PO7	PO8	P09	PO10	PO11	PO12
CO1	1	1	1	1	1	-	3	1	-	-	-	_





CO2	2	2	1	3	1	-	3	2	-	-	-	-
CO3	3	3	1	3	3	-	3	3	-	-	-	-
CO4	2	3	1	3	3	-	3	3	-	-	-	-
CO5	2	3	3	1	3	-	3	3	-	-	1	-
CO6	2	3	3	1	3	-	3	3	-	-	-	-
Average	2	2.5	1.66	2	2.33	-	3	2.5	-	-	-	-

# CO-PSO Mapping Matrix for Course MCA/GEN/3/DSC1(a)

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	-
CO2	3	3	3	2	-
CO3	3	3	3	3	-
CO4	3	3	3	3	-
CO5	3	3	3	3	-
CO6	3	3	3	3	-
Average	3	3	3	2.5	-

	Course Contents MCA/GEN/3/DSC1(a): Linux and Shell Scripts
Unit I	Introduction, hardware requirements for Unix/Linux, salient features of Unix-multiuser capability, multitasking, communication, security, portability. Unix system organization, types of shells, Unix commands, the Unix file system, listing of files and directories, file permissions with chmod, disk related commands. Essential Unix/ Linux commands: cal, touch, file, file related commands, viewing files, taking printouts, file compression, the on-line Unix manual.
Unit - II	I/O redirection and piping, the vi editor, modes of operations in vi. processes in Unix/Linux: background processes, nohup command, killing a process, changing process priorities, scheduling of processes- the at command, the batch command, the crontab command.  Communication: the write command, the wall command, motd command, mail-sending, handling incoming mail, customizing mail.
Unit - III	Simple Filters: the sample database, pr- paginating files, head, tail, cut, paste, sort, unique, tr, displaying a word-count list.  Filters using regular expressions: grep – searching for a pattern, basic regular expression, extended regular expression.  Sed: the stream editor, line addressing, using multiple instruction (-E and -F), context addressing, text editing, substitution(s), basic regular expression revisited.
Unit - IV	Awk: an advanced filter, simple awk filtering, splitting into fields, variables and expressions, the comparison operators, number processing, variables, the –f option, the begin and end sections, built-in-variables, arrays, functions.





	Perl: the master manipulator- perl preliminaries, chop function, string handling functions, split, join, for each, lists and arrays, file handling, file tests, subroutines.									
Text/Reference Books										
Text Books  1. Sumitabha Das, Your Unix – The Ultimate Guide, Tata McGraw Hill, 2008  2. YaswantKanetkar, "Unix Shell Programming", BPB Publication, (2009).										
Reference Books	<ol> <li>Matthew Neil, Stones Richard, Beginning Linux Programming, Wiley India Pvt. Ltd.</li> <li>Christopher Negus, Linux Bible, Wiley India Pvt. Ltd.</li> <li>Richard Peterson, Linux – The Complete Reference, Tata McGraw Hill</li> </ol>									





#### MCA/GEN/3/DSC1 (b) Android Software Development

Course Type	Course	Contact	Delivery	Maxim	um Ma	rks		Exam	Assessment	
	Credit	Hours/Week	Mode	External	Inte	rnal		Duration	Methods	
Optional	04	04	Lecture	70	30		3 Hours	TEE/MTE/		
Theory					20	5	5		Assignment/ Attendance	

**Instructions to paper setter for Final-Term Examination:** The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

**Course Objectives:** The objective of this course is to provide in-depth coverage of various concepts of android application development. This course will help the students in learning to develop and publish their own android applications.

Course Outcomes	At the end of thi	s course, the stude	ent will able to	:						
CO1				ment, architectur l to android applic						
CO2	explain: versions of android, architecture, software development platform, JAVA SE, the Dalvik virtual machine and various android services.									
CO3	demonstrate: android SDK, IDE, AVDs, project configuration settings, directory structure of android project, activities and services of android.									
	illustrate: android versions, features, system requirements, applications, directory structures, resource folders, android services, screen sizes and android framework.									
	compare and contrast: android versions with their functions, types of android applications, development platforms, layout of android applications, activities associated with android and user interfaces.									
CO6	create: android applications using different types of resources and development platforms.									
CO-PE	O Mapping Mat	trix for Course M	ICA/GEN/3/D	OSC1 (b)						
COs	PEO1	PEO2	PEO3	PEO4	PEO5					
CO1	1	3	1	3	3					
CO2	2	3	1	3	3					
CO3	3	3	1	3	3					
CO4	3	3	1	3	3					
CO5	3	3	1	3	3					
CO6	3	3	1	3	3					





Average		2.5		3			1		3			3
	CO-PO	Mappin	g Mat	rix for Co	ourse M	CA/G	EN/3/1	DSC1	(b)			
COs	PO1	PO2	PO3	P04	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	-	3	1	-	   	-	-
CO2	2	2	1	3	1	-	3	2	-	-	-	-
CO3	3	3	1	3	3	-	3	3	-	-	-	-
CO4	2	3	1	3	3	-	3	3	-	-	-	-
CO5	2	3	3	1	3	-	3	3	-	-	-	-
CO6	2	3	3	1	3	-	3	3	-	-	-	-
Average	2	2.5	1.66	2	2.33	-	3	2.5	-	-	-	-
CO-PSO Mapping Matrix for Course MCA/GEN/3/DSC1 (b)												
COs		PSC	D1	PSO	02	F	PSO3		PSO4		PS	SO5
CO1		3		3			3		1		-	
CO2		3		3			3		2			-
CO3	CO3			3			3		3			-
CO4	CO4			3			3		3			-
CO5		3		3			3		3			-
CO6		3		3 3 3				-				
Average		3		3			3		2.5			-
	MCA/	GEN/3/1		Course C (b) Andr		ware ]	Develo	pmen	ıt			
	Introduct application Android installing (IDE), cr	Develo Java, a	opmen and Al	t Enviro DT bund	onment: le, ecli _l	syste	em re tegrate	quire	ments,	And	roid	SDK,
	Android : Virtual l default re	Machine	e, The	directo	ry stru	cture	of an	n And	droid	proje		
Unit - IV	Android	Framev	work	overviev	v, And	roid	applica	ation	comp	onent	s, A	ndroid





activities: defining the UI, Android services: processing in the background. Android Manifest XML: declaring your components, understanding Android views, view groups and layouts, Graphical User Interface screen with views displaying pictures, files, content providers, and databases.										
Text/Reference Books										
Text Books	<ol> <li>Burton Michael, Android App Development for Dummies, Wiley, 2015.</li> <li>Wei-Meng Lee, Beginning Android 4 Application Development, Wiley India (Wrox), 2013.</li> <li>John Horton, Android Programming for Beginners, Packet Publishing, 2015.</li> </ol>									
Reference Books	1. Ian F. Darwin, Android Cookbook Problems and Solutions for Android Developers, 2e, O'Reilly,2017.									





#### MCA/GEN/3/DSC2 (a): Network Security

Course Type	Course	Contact	Delivery	Maximu	Maximum Marks			Exam	Assessment	
	Credit	Hours/Week	Mode	External	Inte	erna	ıl	Duration	Methods	
Optional Theory	04	04	Lecture	70	3	30		3 Hours	TEE/MTE/ Assignment(s)/	
					2 0	5	5		Attendance	

Instructions to paper setter for Final-Term Examination: The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

**Course Objectives:** To study fundamental concepts in Network Security, security attack, cryptography, authentication, web security, system and email security.

<b>Course Outcomes</b>	At the end of this course, the student will be able to:								
CO1	define: computer security, security standards, cipher model, encryption								
	techniques, data encryption standards, public-key cryptography, security at								
	transport layer, SSL/TSL attacks, wireless security and IEEE 802.11i.								
CO2	explain: computer concepts related with the security, symmetric techniques,								
	advanced encryption standard, RSA, concept of digital signature, security								
	protocols, wireless security measures and email security.								
CO3	illustrate: the different features related with computer security, encryption and								
	symmetric techniques, data encryption standards, security at transport layer								
	and wireless LAN security.								
CO4	classify: the information about security, its architecture, types of attacks,								
	security mechanism, encryption standards, protocols at transport layer and								
	wireless LAN security.								
CO5	evaluate: the security trends, security mechanisms, cipher model, RSA, Diffie-								
	Hellman key exchange, transport layer security, SSL/TSL attacks, wireless								
	security and IP security.								

#### **CO-PEO Mapping Matrix for Course MCA/GEN/3/DSC2(a)**

COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3





CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
Average	2.4	3	1	3	3

# CO-PO Mapping Matrix for Course MCA/GEN/3/DSC2 (a)

COs	PO1	P02	P03	P04	PO5	PO6	PO7	PO8	P09	PO10	P011	P012
CO1	1	3	1	1	1	-	3	1	-	2	-	-
CO2	2	1	1	3	1	-	3	2	-	2	-	-
CO3	3	1	1	3	3	-	3	3	-	2	-	-
CO4	2	1	1	3	1	-	3	3	-	2	-	-
CO5	2	1	3	1	3	-	3	3	-	2	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-

# CO-PSO Mapping Matrix for Course MCA/GEN/3/DSC2 (a)

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	1	-
CO2	3	2	3	2	-
CO3	3	2	3	3	-
CO4	3	2	3	3	-
CO5	3	2	3	3	-
Average	3	2	3	2.4	-

	Course Content MCA/GEN/3/DSC2 (a): Network Security
Unit – I	Computer Security Concepts – Introduction, security, security trends, components of information system, OSI security architecture, security attacks, goals for security, security mechanisms, security standards.  Cipher model, cryptanalysis and brute-force attack, classical encryption techniques – symmetric techniques – substitution techniques, transposition techniques, rotor machines, steganography.
Unit – II	Traditional block cipher; data encryption standard — encryption and decryption, advanced encryption standard — structure and expansion functions.  Public-key cryptography — principles, applications and requirements; RSA, Diffie-Hellman key exchange. Concept of digital signature.
Unit – III	Security at Transport Layer, web security considerations, Transport Layer Security, TLS record protocol, change cipher spec protocol, alert protocol, handshake protocol, heartbeat protocol;





	SSL/TSL attacks; HTTPS; Secure shell; user authentication protocol, connection protocol.						
Unit – IV	Wireless Security, wireless security measures, mobile device security - threats and strategy.  Wireless LAN security, IEEE 802.11i - services, operation and phases.  Email security, S/MIME, PGP, overview of IP security.						
	Text/Reference Books						
Text Books	<ol> <li>William Stallings, Cryptography And Network Security Principles And Practice, Pearson Education</li> <li>Forouzan, Mukhopadhyay, Cryptography &amp; Network Security, McGraw Hill</li> </ol>						
Reference Boo	1. AtulKahate, Cryptography and Network Security, TMH 2. Godbole, Information Systems Security, Wiley India Mark Stamp, Information Security Principles and Practice, Willy India						

#### MCA/GEN/3/DSC2 (b): Wireless Network

Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment
	Credit	Hours/Week	Yeek Mode External		Internal	Duration	Methods
Optional Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance

**Instructions to paper setter for Final-Term Examination:** The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

**Course Objectives:** To study fundamental concepts in wireless network, various LAN standards, IP and IPV6 Layer, Transmission protocols and WAN standards.

<b>Course Outcomes</b>	At the end of this course, the student will be able to:
CO1	define: wireless LAN, architecture, mobile network layer, mobile
	transport layer and wireless wide area network.
CO2	describe: WLAN technologies, IEEE 802.11 types , IEEE 802.16,
	Bluetooth, IPV6, mobile ad-hoc network, TCP enhancements for wireless
	network, UTMS, 3G-MSC, 3G-SGSN, 3G-GGSN, applications of 4G,
	features and challenges of 5G.
CO3	illustrate: wireless LAN, system architecture, physical layer, Mac layer,
	Bluetooth architecture, mobile IP, mobile ad-hoc network, mobile
	transport layer, TCP improvements, wireless wide area network, HSDPA,
	features and challenges of 4G, 5G.
CO4	analyze: WLAN technologies, 802.11b, 802.11a, IEEE 802.16, IPV6,
	Routing, TCP enhancements, TCP improvements, UMTS core network
	architecture, firewall, 3G, 4G and 5G networks.





# CO5 compare: different Wireless LAN technologies, mobile network layer, mobile transport layer, Mobile IP, mobile ad-hoc networks, protocols, TCP improvements and wireless WAN types.

## CO-PEO Mapping Matrix for Course MCA/GEN/3/DSC2 (b)

COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3
CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
Average	2.4	3	1	3	3

#### CO-PO Mapping Matrix for Course MCA/GEN/3/DSC2 (b)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	1	-	2	-	-
CO2	2	1	1	3	1	-	3	2	-	2	-	-
CO3	3	1	1	3	3	_	3	3	-	2	-	-
CO4	2	1	1	3	1	_	3	3	-	2	-	-
CO5	2	1	3	1	3	_	3	3	-	2	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-

#### CO-PSO Mapping Matrix for Course MCA/GEN/3/DSC2 (b)

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	1	-
CO2	3	2	3	2	-
CO3	3	2	3	3	-
CO4	3	2	3	3	-
CO5	3	2	3	3	-
Average	3	2	3	2.4	-

	Course Content MCA/GEN/3/DSC2 (b) : Wireless Network
Unit - I	Wireless LAN: Introduction-WLAN technologies: Infrared, UHF narrowband, spread spectrum -IEEE802.11: System architecture, protocol architecture, physical layer, MAC layer, 802.11b, 802.11a — Hiper LAN: WATM, BRAN, HiperLAN2 — Bluetooth: Architecture, Radio Layer, Baseband layer, Link manager Protocol, security - IEEE802.16-WIMAX: Physical layer, MAC, Spectrum allocation for WIMAX.





Unit - II	Mobile Network Layer: Introduction - Mobile IP: IP packet delivery, Agent discovery, tunneling and encapsulation, IPV6- Network layer in the internet-Mobile IP session initiation protocol - mobile ad-hoc network: Routing, Destination Sequence distance vector, Dynamic source routing.					
Unit - III	Mobile Transport Layer :TCP enhancements for wireless protocols - Traditional TCP: Congestion control, fast retransmit/fast recovery, Implications of mobility - Classical TCP improvements: Indirect TCP, Snooping TCP, Mobile TCP, Time out freezing, Selective retransmission, Transaction oriented TCP - TCP over 3G wireless networks.					
Unit - IV	Wireless Wide Area Network: Overview of UTMS Terrestrial Radio access network-UMTS Core network Architecture: 3G-MSC, 3G-SGSN, 3G-GGSN, SMS-GMSC/SMS-IWMSC, Firewall, DNS/DHCP-High speed Downlink packet access (HSDPA)- LTE network architecture and protocol, features and challenges of 4G, Applications of 4G, Introduction to 5G vision,5G features and challenges.					
	Text/Reference Books					
Text Books	<ol> <li>Jochen Schiller, "Mobile Communications", 2e, Pearson Education 2012.</li> <li>Vijay Garg, "Wireless Communications and Networking", 1e, Elsevier, 2007.</li> </ol>					
Reference Books	<ol> <li>William Stallings, Wireless Communications and Networks, Pearson/Prentice Hall of India.</li> <li>Erik Dahlman, Stefan Parkvall, Johan Skold and Per Beming, "3G Evolution HSPA and LTE for Mobile Broadband", 2e, Academic Press, 2008.</li> <li>Anurag Kumar, D. Manjunath, Joy Kuri, "Wireless Networking", 1e, Elsevier 2011.</li> <li>Simon Haykin, Michael Moher, David Koilpillai, "Modern Wireless Communications", 1e, Pearson Education, 2013.</li> </ol>					





	MCA/GEN/3/DSC3 (a): Discrete Mathematics								
Course	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment		
Type	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods		
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/		
					20 5 5		Attendance		

**Instructions to paper setter for Final-Term Examination:** The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

**Course Objectives:** This course is aimed at making the students familiar with various discrete structures, operations performed thereupon and their implementation mechanism.

<b>Course Outcomes</b>	By the end of this course, the student will be able to
CO1	define: sets and elements, introduction and representation of relations, types
	of functions, graphs and multigraphs, Boolean algebra, group, and subgroups
CO2	describe and discuss: inclusion-exclusion principle, finite and Infinite sets.,
	types & composition of relations, types of graphs, sorting and searching,
	Boolean algebra and groups.





CO3	г	solve: various mathematical problems related to sets, graphs, Boolean algebra and groups, directed and undirected graphs, basic logical operations on propositions and truth tables.										
CO4		llustrate: nultigrap			-					-		s and
CO5	C	letermin nultigrap	e: comp	plex pro	blem	related	to se	ts and	elem	_		and
	CO-PE	О Марг	oing Ma	trix for	Cours	se MCA	/GEN	/3/DS(	C3 (a)			
COs		PEO		PEC		PEG			EO4		PEO5	
CO1		1		3		1			3		3	
CO2		2		3		1			3		3	
CO3		3		3		1			3		3	
CO4		3		3		1			3		3	
CO5		3		3		1			3		3	
Average		2.4		3		1			3		3	
	CO-P	O Mapp	ing Mat	trix for (	Course	e MCA/	GEN/.	3/DSC	3 (a)	I		
COs	1	2	8	4	5	9	7	8	6	0		2
	POI	P02	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	PO1	P012
CO1	1	3	1	1	1	-	3	-	-	_	_	_
CO2	2	1	1	3	1	-	3	-	-	-	-	-
CO3	3	1	1	3	3	-	3	-	-	-	-	-
CO4	2	1	1	3	1	-	3	-	-	-	-	-
CO5	2	1	3	1	3	-	3	_	-	-	-	-
Average	2	1.4	1.4	2.2	1.8	_	3	-	-	-	-	-
C	O-PSC	) Mapp	ing Ma	atrix fo	r Cou	rse MC	A/GE	N/3/DS	SC3 (a)	)		
COs	COs			P	SO2	P	SO3	P	SO4		PSO5	í
CO1			3		1		3		1		-	
CO2			3		1		3		2		-	
CO3			3		1		3		3		-	
CO4			3		1		3		3		-	
CO5			3		1		3		3		-	
Averag	e		3		1		3		2.6		-	

Course Content MCA/GEN/3/DSC3 (a): Discrete Mathematics





Unit - I	Sets and elements, inclusion-exclusion principle, finite and Infinite sets, power sets, multisets, introduction and representation of relations, types of relations, composition of relations: introduction to functions, types of functions.
Unit - II	Graphs and multigraphs, sequential and linked representation of graphs, Directed and Undirected graphs: Types of graphs, labelled and weighted graphs, complete, regular and bipartile graphs, planar graphs, tree graphs, paths, connectivity, depth first search, breadth first search, topological sort.
Unit - III	Boolean algebra, basic definitions, duality, truth tables, boolean functions, basic logical operations on propositions, proposition and truth tables, tautologies and contradictions, algebra of propositions, rules of inference.
Unit - IV	Group and subgroups, semigroups groups, normal subgroups, homomorphisms, rings, integral domain and fields, ordered sets, hasse diagram of partially ordered sets, lattices, bounded lattices, distributive lattices, complemented lattices.
	Text/Reference Books
Text Books	<ol> <li>Seymour Lipschutz, Marc Lars Lipson, Discrete Mathematics, McGraw-Hill International Editions, Schaum's Series.</li> <li>Bernard Kolman, Robert C. Busbym, Discrete Mathematical Structures for Computer Science, Prentice-Hall of India Pvt. Ltd.</li> </ol>
Reference Books	<ol> <li>Alan Doerr, Kenneth Levaseur, Applied Discrete Structures for Computer Science, Galgotia Publication Pvt. Ltd.</li> <li>Kennech G. Rosen, Discrete Mathematics and its Applications, McGraw- Hill International Editions, Mathematics Series.</li> </ol>





	MCA/GEN/3/DSC3 (b): Theory of Computation										
Course			Delivery	Maximu	ım Marks	Exam	Assessment				
Type	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods				
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/				
					20 5 5		Attendance				

**Instructions to paper setter for Final-Term Examination:** The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

Course Objectives: to understand fundamental concepts of finite automata, regular grammar, mealy and Moore machine, context free language and grammar their properties, context free language and grammar.

	-		0.11									1
Course Outcomes					rse, the							
CO1					concept			_				
					ng macl		ontext f	free lan	guage &	k gran	nmar, c	ontext
					gramma							
CO2			•		ntext fr			_	_			
	_				erminis							omata,
					rs and la							
CO3		•	_		o check	_	_	_	•			
					guage,							
CO4					ta, regu							
				t ser	sitive	gramm	nar, noi	rmal to	rms, p	ushdo	wn aut	omata,
CO5		ng mac		troct	NFA &	DEA	manly	and Ma	ore me	ahina	CNIE	GNE
CO3					differer						,CIVITA	CONT,
CO	CO-PEO Mapping Matrix for Course MCA/GEN/3/DSC3 (b)											
COs	PI	EO1		PEC	)2	]	PEO3		PEO4		PEG	O5
CO1		1		3			1		3		3	
CO2		2		3			1		3		3	
CO3		3		3			1		3		3	
CO4		3		3			1		3		3	
CO5		3		3			1		3		3	
Average	2	2.4		3			1		3		3	
CO	-PO 1	Mappi	ng Ma	atrix	for Cou	ırse M	[CA/G]	EN/3/D	SC3 (b	)		
COs												6)
	PO1	P02	PO3	P04	PO5	90d	PO7	PO8	P09	PO10	PO11	PO12
	Ь	Ъ	Ь	Ъ	Ь	Ь	Ь	Ь	Ь	P	P	P
CO1	1	3	1	1	1	-	3	-	-	-	-	-
CO2	2	1	1	3	1	-	3	-	-	-	-	-





[	1											
CO3	3	1	1	3	3	-	3	-	-	-	_	-
CO4	2	1	1	3	1	-	3	-	-	-	-	-
CO5	2	1	3	1	3	-	3	-	-	-	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	-		
СО	-PSO	Mapp	ing M	atrix	for Co	urse N	ICA/G	EN/3/	DSC3 (I	b)		
COs	]	PSO1 PSO2 PSO3 PSO4 PSO5										
CO1		3		1			3		1		-	-
CO2		3		1			3		2		-	-
CO3		3		1			3		3		-	-
CO4		3		1			3		3		-	
CO5		3		1			3		3		-	-
Average		3		1			3		2.6		-	-
	M	CA/GI	EN/3/I		rse Co (b): T	ontent heory (	of Com	putati	on			
Unit - I  Unit - II	appl dete char mea Con appl	Finite Automata: Deterministic and non-deterministic finite automata, applications of finite automata, equivalence of deterministic and non-deterministic finite automata, state minimization of DFA, Kleen's characterization theory for sets accepted by finite automata, regular grammar, mealy and Moore machine.  Context Free Language and Grammar: Context free grammar, parse tree, application of context free grammars, ambiguity in grammars and languages.  Pushdown Automata: Deterministic pushdown automata and Non-										
Unit - III	dete equi Prop pump langu	rminist valence erties oping le pages, of ext Ser	e of Plot Conma decision	ushdo DA's text-F for co	wn a and CF Free La ontext-f	utomate G's. nguage Free gra of con	a, lan	mal for	of p	ontext :	free gra	ammars, text-free erties of
Unit - IV	Turi mac Dete	Turing machine: Construction of Turing machine, programming techniques for Turing machine, extensions to the basic Turing machine (multi-tape Turing machine, equivalence of one-tape and multi-tape Turing machine, Non Deterministic Turing machine), restricted Turing machine (multi-stack machines, counter machines).								Turing ne, Non		
	Text/Reference Books											
Text Books	2. I	McGraw Hill.										
Reference Books	1	Automa	ata, Pe	arson	Educa	tion.						ation to





- computation, PHI Learning.
- 3. Michael Sipser, Introduction to the Theory of Computation, Cengage Learning.

#### MCA/GEN/3/DSC3 (c): Compiler Construction

Course Type	Course	Contact	Delivery	Maxim	um M	m Marks		ım Marks		Exam	Assessment
	Credit	Hours/Week	Mode	External	Internal		Internal		ıl	Duration	Methods
Optional Theory	04	04	Lecture	70			5	3 Hours	TEE/MTE/ Assignment/ Attendance		

**Instructions to paper setter for Final-Term Examination:** The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

Course Objectives: To study fundamental concepts of compiler, interpreters, assemblers, lexical analysis, syntax analysis, intermediate code generation and code optimization techniques used in compiler design.

<b>Course Outcomes</b>	At the end of this course, the student will be able to:
CO1	define: syntax analysis, grammar, intermediate code, code optimization,
	code generation ,syntax directed translation.
CO2	explain: basics of compilers, interpreters, assemblers, compiler construction
	tools, process of lexical analysis, syntax analysis, types of grammar, code
	optimization and code generation.
CO3	illustrate: various analysis-synthesis model of translation, lexical analysis,
	syntax analysis, optimization of basic blocks, loops optimization, peephole
	optimization and blocks code generation from directed acyclic graphs.
CO4	analyze: phase of compilation, finite state automata recognition of regular
	expressions, parser generator, optimization technique of code and
	management of code.
CO5	contrast: compiler, interpreters and assemblers, finite state automata
	recognition, process of syntax analysis, code improving transformations and
	syntax directed translation scheme.

CO	CO-PEO Mapping Matrix for Course MCA/GEN/3/DSC3 (c)										
COs	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	3	1	3	3						
CO2	2	3	1	3	3						
CO3	3	3	1	3	3						
CO4	3	3	1	3	3						
CO5	3	3	1	3	3						
Average	2.4	3	1	3	3						
CO	O-PO Mapping I	Matrix for Cou	rse MCA/GEN	/3/DSC3 (c)							





CO		1	ĺ	1	1			1		1	1		
COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	3	-	-	-	-	-	
CO2	2	1	1	3	1	-	3	-	-	-	-	-	
CO3	3	1	1	3	3	-	3	-	-	-	-	-	
CO4	2	1	1	3	1	-	3	-	-	-	-	-	
CO5	2	1	3	1	3	-	3	-	-	-	-	-	
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	-	-	-	
CO	)-PSO	Mappi	ng Ma	trix fo	r Cou	rse MO	CA/GI	EN/3/I	OSC3 (	<b>c</b> )			
COs		PSO1		PSO	2	PS	SO3		PSO4		PS	O5	
CO1		3		1			3		1			-	
CO2		3		1			3		2			-	
CO3		3		1			3		3			-	
CO4		3		1			3		3		-		
CO5		3		1			3		3		-		
Average		3		1			3		2.6			-	
	MO	CA/GE	N/3/D	Cours SC3 (c			Const	ructio	n				
t	of compositions	oilation Analys	, anal	ysis-sy	nthesis	s mode	el of t	transla	tion, c	compil	er con	struction nition of	
	Syntax oottom-	•			•		•	• •	of gran	nmars,	top-do	own and	
	Intermediate Code Generation: Intermediate languages, generating intermediate code for assignment statement, Boolean expression, and case statement.  Code Optimization: Introduction to code optimization, potential cases of code optimization, optimization of basic blocks, loops optimization, code improving transformations.												
l l	Unit – IV  Code Generation: Basics, dynamic storage management, translating basic blocks, a simple code generator, peephole optimization, directed acyclic graphs and basic blocks code generation from directed acyclic graphs.  Syntax Directed Translation: Overview of syntax directed translation scheme.									nd basic			
			Te	xt/Ref	erence	Books	s						
	<ol> <li>Alfred V Aho, Principles of Compiler Design, Narosa Publishing House.</li> <li>Aho, Sethi, &amp; Ullman, Compilers Principles, Techniques and Tools, Pearson Education.</li> </ol>												





Reference Books	1.	Dhamdhere D.M, System programming and operating system, McGraw Hill.
	2.	Beck L. Leland, System Software, Pearson Education.
	3.	Fischer, Crafting a Compiler in C, Pearson Education.
	4.	Jean Paul Tremblay and Sorenson, The Theory and Practice of Compiler
		Writing, McGraw Hill.

MCA/GI	MCA/GEN/3/CC17: Software Lab based on MCA/GEN/3/CC15(Web Development)										
Course Type	Course	Contact	Delivery	Maxim	ım Marks	Exam	Assessment				
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods				
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File				

**Instructions to paper setter for Final-Term Examination:** The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

**Course Objectives:** The objective of this course is to get the students hands on practice with the concepts of web development/programming covered in course MCA/GEN/3/CC15.

Course	At the end of this course, the student will be able to:
Outcomes	
CO1	outline: information architecture, its role collaboration, organization
	information, design navigation, designing search interface, indexing,
	grouping content, conceptual design, html tags, layouts, basics of xml,
	html5 fundamentals.
CO2	summarize: information architecture, its role collaboration and
	organization information, design navigation, designing search interface,
	indexing, grouping content, conceptual design, html tags, layouts, basics
	of xml, html5 fundamentals.
CO3	illustrate: web application navigation, design architecture, html tags,
	audio support in browser, style sheets, form controls, features &
	structure of XML, relationship between html, sgml and xml, overview
	of html5.
CO4	categorize: information system, navigation system, organization system,
	different elements of html and xml, video format and binary format,
	attributes of xml objects, generation of web development.
CO5	determine: information system, navigation system, organization system,
	different elements of html & xml, video format and binary format,
	attributes of xml objects, generation of web development.
CO6	develop: web applications using html and xml, development of web
	services.
C	CO-PEO Mapping Matrix for Course MCA/GEN/3/CC17





	B	TO 1		DE	22		DEO2		PEC	. 1	l DI	70.5
Cos	P	EO1		PEC			PEO3	ל כי		<i>)</i> 4		EO5
CO1		1		3			3		3			3
CO2		2		3			3		3			3
CO3		3		3			3		3			3
CO4		3		3			3		3			3
CO5		3		3			3		3			3
CO6		3		3			3		3			3
Average		2.5		3			3		3			3
	CO-P	O Ma	pping	Matri	x for (	Course	e MCA/	GEN/	3/CC17		I	
Cos												
	PO1	PO2	P03	P04	PO5	P06	PO7	P08	P09	PO10	P011	PO12
	Ь	Ь	Ь	Ь	Ь	Ь	Ь	P	Ь	P(	P(	P(
CO1	1	3	1	1	1	-	3	1	-	-	-	-
CO2	2	1	1	3	1	-	3	2	-	-	-	-
CO3	3	1	1	3	3	-	3	3	-	-	-	-
CO4	3	3	1	3	1	-	3	3	-	-	-	-
CO5	3	1	3	1	3	-	3	3	-	-	-	-
CO6	3	3	3	3	3	-	3	3	-	-	-	-
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-
	CO-P	SO Ma	apping	, Matr	ix for	Cours	e MCA	GEN.	/3/CC17	1	ı	
Cos	P	SO1		PSO	2		PSO3		PSC	)4	PSO5	
CO1		3		1			1		1			-
CO2		3		2			2		2			-
CO3		3		3			3		3			-
CO4		3		3			3		3			-
CO5		3		3			3		3			
CO6		3		3			3		3			-
Average	_	3		2.5			2.5		2.5	5		-





#### MCA/GEN/3/CC18 (i): Software Lab based on MCA/GEN/3/DSC-1 (i) (Linux and Shell Scripts)

Course Type	Course	Contact	Delivery	Maximu	Maximum Marks		Assessment
	Credit	Hours/Wee k	Mode	External	Internal	Duration	Methods
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File

**Instructions to paper setter for Final-Term Examination:** The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

Course Objectives: The objective of this course is to get the students hands on practice with scripting/programming concepts of Linux and Shell script as covered in course MCA/GEN/3/DSC1 (i)

<b>Course Outcomes</b>	At the end of this course, the student will be able to:
CO1	define and outline: basic requirements, features, essential commands of
	Linux, vi editors, processes scheduling, communication commands,
	simple (grep, sed) and advanced filters (awk, perl).
CO2	explain: the organization, file system, Shells, file permissions, priorities,
	processes, communication commands in Linux and operations
	performed by the simple as well as advanced filters.
CO3	perform: operations in Linux, modes of operations in vi, mailing
	communication, regular expressions along with the simple and advanced
	filters.
CO4	categorize: the Linux commands, processes, priorities, communication
	commands, simple and advanced filters using regular expressions.
CO5	compare: shells, file permissions, processes, command with different
	options, simple filters like grep, sed and advanced filters like awk, perl.
CO6	create: Linux shell scripts showing the use of commands, regular
	expressions and filters.





## CO-PEO Mapping Matrix for Course MCA/GEN/3/CC18 (i)

COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3
CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
CO6	3	3	1	3	3
Average	2.5	3	1	3	3

CO-PO Mapping Matrix for Course MCA/GEN/3/CC18 (i)

COs	PO1	P02	P03	PO4	PO5	P06	PO7	PO8	P09	PO10	P011	P012
CO1	1	1	1	1	1	-	3	1	-	-	-	-
CO2	2	2	1	3	1	-	3	2	-	-	-	-
CO3	3	3	1	3	3	-	3	3	-	-	-	-
CO4	2	3	1	3	3	-	3	3	-	-	-	-
CO5	2	3	3	1	3	-	3	3	-	-	-	-
CO6	2	3	3	1	3	-	3	3	-	-	-	-
Average	2	2.5	1.66	2	2.33	-	3	2.5	_	-	-	-

# CO-PSO Mapping Matrix for Course MCA/GEN/3/CC18 (i)

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	-
CO2	3	3	3	2	-
CO3	3	3	3	3	-
CO4	3	3	3	3	-
CO5	3	3	3	3	-
CO6	3	3	3	3	-
Average	3	3	3	2.5	-





# MCA/GEN/3/CC18 (ii): Software Lab based on MCA/GEN/3/DSC-1 (ii) (Android Software Development)

Course Type	Course	Contact	Delivery	Maximum Marks		Exam	Assessment
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File

**Instructions to paper setter for Final-Term Examination:** The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

**Course Objectives:** The objective of this course is to get the students hands on practice with scripting/programming concepts of Android programming/development as covered in course **MCA/GEN/3/DSC1 (ii).** 

<b>Course Outcomes</b>	At the end of this course, the student will able to:							
CO1	define: android, features, development environment, architecture, software development platform and the framework related to android applications.							
CO2	explain: versions of android, architecture, software development platform, JAVA SE, the Dalvik virtual machine and various android services.							





CO3	demonstrate: android SDK, IDE, AVDs, project configuration settings, directory structure of android project, activities and services of android.
CO4	illustrate: android versions, features, system requirements, applications, directory structures, resource folders, android services, screen sizes and android framework.
CO5	compare and contrast: android versions with their functions, types of android applications, development platforms, layout of android applications, activities associated with android and user interfaces.
CO6	create: android applications using different types of resources and development platforms.

#### CO-PEO Mapping Matrix for Course MCA/GEN/3/CC18 (ii)

COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3
CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
CO6	3	3	1	3	3
Average	2.5	3	1	3	3

# CO-PO Mapping Matrix for Course MCA/GEN/3/CC18 (ii)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	-	3	1	-	-	-	-
CO2	2	2	1	3	1	-	3	2	-	-	-	_
CO3	3	3	1	3	3	-	3	3	-	-	-	-
CO4	2	3	1	3	3	-	3	3	_	-	-	-
CO5	2	3	3	1	3	-	3	3	-	-	-	_
CO6	2	3	3	1	3	-	3	3	-	-	-	_
Average	2	2.5	1.66	2	2.33	-	3	2.5	-	-	-	-

#### CO-PSO Mapping Matrix for Course MCA/GEN/3/CC18 (ii)

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	-
CO2	3	3	3	2	-
CO3	3	3	3	3	-
CO4	3	3	3	3	-





CO5	3	3	3	3	-
CO6	3	3	3	3	-
Average	3	3	3	2.5	-

MC	MCA/Gen /3/SEC1: Presentation/Viva on Internship/Summer Training												
Course Type	Course	Contact	Delivery	•									
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Internship/ Summer Training	04	-	Internship/ Training	100	-	-	Training Report/ Viva Voce						

**Instructions to paper setter for Final-Term Examination:** The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of the Internship/Training Report and a presentation based viva voce exam during third semester of MCA/GEN.

**Course Objectives:** To expose students to real work of environment experience and at the same time, to gain the knowledge through hands on observation and job execution and allows them to relate the theory to practice. The interns/trainees will also develop skills in work ethics, communication, management and others.

**Course** At the end of this course, the student would be able to:





Outcomes												
CO1	and	_	ndustr	y, (ii)	nitty-	gritty	of wo	ork cu		tween of indu		
CO2	une cul	derstan	d and the ir	descr dustri	ibe (i) al sett	the a	acader	nia-in		interfa		
CO3	apj	apply the best practices and the information/knowledge gained thus far to academia.										
CO4		ssify thacaden				veen v	work p	ractic	es and	work	enviror	nments
CO5	coı		the w			es and	work	envi	ronme	nts of	industi	ry and
	CO-P	EO Ma	pping	Matri	x for C	Course	MCA	/Gen	/3/SE	C1		
Cos		PEO1		PEC	)2		PEO3	3	PI	EO4	PI	EO5
CO1		1		3			3			3		3
CO2		2		3			3			3		3
CO3		3		3			3			3		3
CO4		3		3			3			3		3
CO5		3		3			3			3		3
Average		2.4		3			3			3		3
	CO-F	O Map	ping N	Matrix	for C	ourse	MCA	Gen /	/3/SEC	C1		
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	3	3	3	3	3	3	-	3	3
CO2	2	2	2	3	3	3	3	3	3	-	3	3
CO3	3	2	2	3	3	3	3	3	3	-	3	3
CO4	3	2	2	3	3	3	3	3	3	-	3	3
CO5	3	2	2	3	3	3	3	3	3	-	3	3
Average	2.4	2	2	3	3	3	3	3	3	-	3	3
	СО-Р	SO Ma	pping	Matri	x for C	Course	MCA	/Gen	/3/SE	C1		
Cos	PS	SO1		PSO	2		PSO3		PS	SO4	PS	SO5
CO1		3		3			3			3		3
CO2		3		3			3			3		3
CO3		3		3			3			3		3
CO4		3		3			3		3		3	
CO5		3		3			3			3		3
Average		3 3 3 3										





MCA/GEN/4/CC19:Python Programming											
Course Type	Assessment										
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods				
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/A				
					20 5 5		ttendance				

**Instructions to paper setter for Final-Term Examination:** The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise





comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

**Course Objectives:** The objectives of this course is to get the students familiar with basic concepts of Python programming, decision making and functions, file handling and object oriented programming concepts, database programming and to implement machine learning concepts.

Course At the end of this course, the student will possess an understanding of:												
Outcomes	Atu	ie ena	or uns	s cours	se, me si	uden	ı wili p	OSSES	s an ui	ideisi	anunig	301.
CO1	defir	ne:inst	allatio	ns.woi	rking,str	uctur	es.con	trolsta	temen	ts.ope	rators	lists .
					nming c							,
CO2					control						ile haı	ndling
					packag							
CO3	use: various python libraries such as numpy,matplotlib ,pandas . apply: python programming constructs to solve real world problems.											
CO4												
004	_	_	librari	_	ctionari	es,coi	laltion	aixcc	ontrois	tateme	ents,ru	пспо
CO5	com		iioiaiiv	<i></i>								
			diction	aries,	condition	nal&c	control	staten	nents,f	unctio	ns,pyt	hon
		datatypes,dictionaries,conditional&controlstatements,functions,python libraries.										
CO6	desig	gn:bas	ic and	advan	ced app	licati	ons in 1	pytho	n.			
CO-PEO Mapping Matrix for Course MCA/GEN/4/CC19												
Cos		PEO1 PEO2 PEO3 PEO4 PEO5										
CO1		1 3 3 3 3										
CO2		2			3		3	İ	3			3
CO3		3			3		3		3			3
CO4		3			3		3		3			3
CO5		3			3		3		3			3
CO6		3			3		3		3			3
Average		2.5			3		3		3			3
	CO-PO	O Map	ping N	Aatrix	for Cou	rse M	[CA/G]	EN/4/0	CC19			
COs	PO1	PO2	PO3	PO4	PO5	PO	PO7	PO8	PO9	PO1	PO1	PO12
CO1	1	3	1	1	1	-	3	1	-	-	-	-
CO2	2	1	1	3	1	-	3	2	-	-	-	-
CO3	3	1	1	3	3	-	3	3	_	-	-	-
CO4	3	3	1	3	1	-	3	3	-	-	-	-
CO5	3	1	1	3	3	-	3	3	-	-	-	-
CO6	3	3	3	3	3	-	3	3	-	-	-	-
Average	2.5	2	1.3	2.6	2	-	3	2.5	-	-	-	-
	CO-PS	O Maj	pping I	Matrix	for Cou	irse N	ICA/G	EN/4/	CC19			
COs	PSO1 I				SO2		PSO3		PSC	04	PS	SO5
CO1		3			1		1		1			-





CO6 Average	3	2.5	2.5	2.5	-
CO5	3	3	3	3	-
CO4	3	3	3	3	-
CO3	3	3	3	3	-
CO2	3	2	2	2	-

			-	_							
		MCA/GEN/	Course Conte 4/CC19: Pythor								
Unit – I	Con Van floa	nstallation and Working with Python, Using Help, Structure of a Python Program Control flow, Interpreter shell, Tokens, Identifiers, Reserved keywords, Literals Variables, Python basic Operators, Declaring and using Numeric data types: int loat, complex, using string data type. Python Casting, Scope of a Variable, Working with: String, List, Tuples and Dictionaries.									
Unit – II	Core Cre Imp Lar	nditional blocks us ntinue, Break and eating Module, using porting Package, 'mbda Function in ekages.	Else, organizing Modules and I Viewing Packa	g python code: Built-in Module ge Content and	s using functions. Packages: Pd Documentat	ons, Modules: ackage Types, ion. Powerful					
Unit – III	Cla Ove Hai File	Object Oriented Programming: Concept of Class, Object and Instances, Constructor Class Attributes and Destructors, Built-in Class Attributes, Inheritance, Methodoverriding, Data Encapsulation, Overloading Operators, Data Hiding, Exception Handling, Programming using Oops concepts.  File Handling: Creating, Opening, Closing, Writing & Reading File Content Deleting a File. Programming using file operations.									
Unit – IV	Res Pyt Pyt Ma	hon NumPy: Arra shape, Array Join, A hon Pandas: Data F hon Matplotlib: Lin chine Learning: Mo ta Distribution, Scat	Array Split, Rand rames, Read CS ne, Grid, Scatter, ean, Median, Mc	om. V, Analyzing Da , Bars, Histograr ode, Standard De	nta and Cleanin	g Data. rts.					
		T	ext/Reference B	Books							
Text Books	2. E	Chun, J Wesley, Cor E. Balagurusamy, In McGraw Hill Educa	troduction to Co	-		Using Python,					
Reference Books		Barry and Paul, Hea Lutz and Mark, Lear	•	•	0.						

MCA/GEN/4/CC20: R Programming											
Course Type		Delivery	Maximu	m Marks	Exam	Assessment					
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods				





Compulsory	04	04	Lecture	70		30		3 Hours	TEE/MTE/
Theory									Assignment/
					20	5	5		Attendance

**Instructions to paper setter for Final-Term Examination:** The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

Course Objectives: To study the fundamental concepts in R programming language, data types, operators, decision making statements and iteration, functions, different data structures like list, vectors, matrices, data frames, charts and graphs, graphics functions and statistical analysis.

Course	1	ne end					nt will	he ahle	e to:			
Outcomes	1 11 11	ic ciiu	oi	5 Cour	50, inc	, stude.	11t VV 111	oc aon				
CO1	list :	data ty	pes,	functi	ons in	R pro	gramn	ning, vi	sualiz	ation.		
CO2		ribe: tl									user d	efined
		tions,u					_			-		
		explain: the process of import and export of data in text file, excel file										
		MYSQ	•									
CO3		variou										
004		<u>y: R pr</u>			_							
CO4		gorize:	-	-			contro	of state	ements	s, in b	uilt an	d user
CO5	_	ned fur pare:					1 &r	contro	al ete	otamar	nts,func	etions
003							1 &	contro	)1 Sta	atemer	its,ruiic	dons,
CO6		packages in R programming. design:basic and advanced applications in R programming.										
	CO-PEO Mapping Matrix for Course MCA/GEN/4/CC20											
	1											
COs	P				)2	1	PEO3		PEO4			
CO1		1		1			3		3		3	
CO2		2		2			3		3		3	
CO3		3		3			3		3		3	
CO4		3		3			3	3			3	
CO5		3		3			3		3		3	
CO6		3		3			3		3		3	
Average		2.5		2.5	5		3		3		3	
	CO-P	О Мар	ping	Matri	x for C	ourse	MCA/(	GEN/4/	CC20	,		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	-	-	-	1	3
CO2	2	1	1	3	1	-	-	-	-	-	2	3
CO3	3	1	1	3	3	-	-	-	-	-	3	3
CO4	3	3	1	3 1 3			3	3				
CO5	3	1	1	3	3	-	-   -   -   -		3	3		
CO6	3	3	3	3			3	3				
Average	2.5	2	1.3	2.6	2	-	-	-	_	-	2.5	3





	CO-PSO Ma	pping Matrix for	Course MCA/G	EN/4/CC20	
COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	1	-	3
CO2	3	3	2	-	3
CO3	3	3	3	-	3
CO4	3	3	3	-	3
CO5	3	3	3	-	3
CO6	3	3	3	-	3
Average	3	3	2.5	-	3
	T	Course ( CA/GEN/4/CC20	: R Programmin		
Unit - I	Basic of R: Introduction to R, Features of R, Variables in R, In-Built Functions in R (mathematical, trigonometric, logarithmic, Date and Time, Sequence, I/O). Data Types in R: Vectors, Matrices, Arrays, Lists, Factors, Data Frames.				
Unit - II	Programming in R: Decision making structures (if, Switch), Loops (For, while, repeat), User Defined functions (with argument without argument), User Defined Package. Reports using remark down (direct rendering, in-direct rendering).				
Unit - III	Data Exploration and Manipulation: Missing Data Management, Data reshaping through melting and casting, special functions across data elements. Import and Export of data: Import and Export of data in text files, excel files and MySQL.				
Unit - IV	Basic Visualization: Pie chart, bar chart, Histogram, Line chart, Dot Chart, Bubble plot, Image Plot, Violin Plot. Advanced Visualization: Scatter plot, corrgrams, star and segment plots, tree maps, heat map.				
		Text/Refere	ence Books		
Text Books	<ol> <li>Christian Heumann, Michael Schomaker and Shalabh, Introduction to Statistics and Data Analysis - with Exercises, Solutions and Applications in R, Springer, 2016.</li> <li>Pierre Lafaye de Micheaux, RémyDrouilhet, Benoit Liquet, The R Software- Fundamentals of Programming and Statistical Analysis, Springer 2013.</li> </ol>				
Reference Books	1. Alain F. Zuur, Elena N. Ieno, Erik H.W.G. Meesters, Use R - A Beginner's Guide to R, Springer 2009.				





	MCA/GEN/4/DSC4(a): Soft Computing											
Course Type	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment					
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods					
Optional Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance					

**Course Objectives:** The objective of this course is to cover fundamental soft computing concepts with an exposure to ANN, fuzzy Logic, optimization techniques using Genetic Algorithm (GA).

Course Outcomes	By the end of this course, the student will be able to:
CO1	recognize the concept of: soft computing and hard computing, simple genetic a fuzzy set, neuron, neural network and activation function.
CO2	understand and describe: the role of genetic algorithm operators, representation set and its operation, types of neural network and activation function including and cons.
CO3	use: genetic algorithm, fuzzy logic, ANN and their constituents for solving optimization problem.
CO4	differentiate: soft computing and hard computing, operators of genetic algoractivation functions of ANN.  Analyze: fuzzification and defuzzification.
CO5	compare: soft computing and hard computing, operators of genetic algor different activation functions of ANN.

CO	D-PEC	Mappii	ng M	[atrix :	for Co	urse N	ICA/C	GEN/4/I	DSC4(	(a)		
COs	I	PEO1		PEO2		P	EO3		PEO4	-	PEO5	
CO1		1		3			1		3		3	
CO2		2		3			1		3			3
CO3		3		3			1		3			3
CO4		3		3			1		3			3
CO5		3		3			1		3			3
Average		2.4		3			1		3			3
C	О-РО	Mappin	g M	atrix f	or Cou	rse M	CA/G	EN/4/D	SC4(a	ı)		
COs	PO1	P02	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	<u> </u>	-	-	-	-
CO2	2	1	1	3	1	-	3	-	-	-	-	-
CO3	3	1	1	3	3	-	3	_	-	-	-	-





CO4	2	1	1	3	1	_	3	_	_	_	_	_
CO5	2	1	3	1	3	_	3	_	_	-	-	_
Average	2	1.4	1.4	2.2	1.8	_	3	_	-	-	-	_
	CO-PSO	∣ O Mappi	⊥ ng M	 [atrix f	 for Co	urse M	I ICA/G	 SEN/4/I	 DSC4(	(a)		
COs	F	SO1		PSO2		PS	SO3		PSO ²	1	PS	O5
CO1		3		1			3		1			-
CO2		3	1 3 2 -									
CO3		3		1 3 3 -								
CO4		3		1			3		3			-
CO5		3		1			3		3			-
Average		3		1			3		2.6			-
		MCA	GEN		se Co C4(a)	ntent : Soft (	Compt	ıting				
Unit – I	Introduction to Soft Computing: Overview of Soft Computing, difference between soft and hard computing, brief descriptions of different components of soft computing including artificial neural networks, fuzzy logic, genetic algorithms.											
Unit – II	represen Selection selection Crossove crossove represen Mutation	n: Roule i. er and it er, order	ette s typ ed c	wheel es: Sin crossov s: Flip	selectingle per, upping,	ction, oint creniform	randor ossove cros	n, rank er, two sover, g, rever	point crossessing,	crosso over f	nt, Bo	oltzmann ultipoint ul-valued mutation
Unit – III	represen Fuzzy se fuzzy se fuzzy ari Fuzzy C	tation of et operati ts, impor	fuzzy on: Intant to on: I	set, bantersecterming  Max-M	asic protion of old of the old of the old old old old old old old old old old	opertie f fuzzy in fuzz omposit	s of fu sets, zy set ion, n	zzy sets union o operation	s. f fuzz ons, pr	y sets, coperties	comples of fu	zzy sets,
Unit - IV	Artificial Neural Network: Basic of neural network: neuron, artificial neuron, neural network, artificial neural network , perceptron, feed forward, multilayer perceptron neural network, advantage and disadvantage of ANNs. activation function and types of activation function. perceptron network, XOR problem.											
			T	ext/Re	ferenc	e Book	KS					
Text Books	learni 2. Zbign	E. Golding, Addistiction in E. Golding, Addistiction in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E. Golding in E.	on W alewi	esley.	enetic							
Reference Books	1. M. M	itchell, A	n Intr	oducti	on to (	Genetic	Algor	ithms, I	Prentic	ce-Hall		





- 2. S. Rajasekaran& G. A. VijayalakshmiPai, Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & Applications, PHI.
- 3. S. N. Sivanandam& S. N. Deepa, Principles of Soft Computing, Wiley India.
- 4. Simon O. Haykin, Neural Networks, A Comprehensive Foundation, PHI.

	MCA/GEN/4/DSC4(b): Machine Learning											
Course Type	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment					
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods					
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/					
					20   5   5		Attendance					

Course Outcomes	At the end of this course, the student will be able to:
CO1	define: the terms of machine learning: types of machine learning, data preprocessing, classification, regression, and neurons.
CO2	explain: learning types, data preprocessing and architecture of ANN.
CO3	apply: training and testing data using data pre processing and model selection techniques and classification, regression, clustering techniques according to their problem.
CO4	Classify: data preprocessing, model selection, regression, classification, and unsupervised learning techniques.
CO5	compare: Data Preprocessing techniques, Supervised and unsupervised learning.

CO	)-PEO	Mappir	ıg M	[atrix 1	for Co	urse N	ICA/G	EN/4/I	OSC4(	(b)		
COs	PEO1			PEO2		P	PEO3		PEO4	-	PEO5	
CO1		1		3			1		3		,	3
CO2		2		3			1		3		,	3
CO3		3		3			1		3			3
CO4		3		3		1			3		,	3
CO5		3		3			1		3		-	3
Average		2.4		3			1		3			3
C	О-РО	Mappin	g Ma	atrix f	or Cou	rse M	CA/G	EN/4/D	SC4(l	<b>)</b> )		
COs	PO1	P02	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	P012
CO1	1	3	1	1	1	-	3	-	-	-	-	-
CO2	2	1	1	3	1	-	3	-	-	-	-	-





CO3	3	1	1	3	3	-	3	-	-	-	-	-
CO4	2	1	1	3	1	-	3	-	-	-	-	-
CO5	2	1	3	1	3	-	3	-	-	-	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	-	-	-
CO	O-PSO	Mappii	ng M	atrix 1	for Co	urse M	ICA/G	EN/4/I	OSC4(	<b>b</b> )	•	'
COs	PS	SO1		PSO2	2	PS	SO3		PSO4		PSO	O5
CO1		3	1			3			1		-	
CO2		3		1			3		2		-	
CO3		3		1			3		3		-	
CO4		3		1			3		3		-	
CO5		3		1			3		3		-	
Average		3		1			3		2.6		-	
								·				

L	
	Course Content MCA/GEN/4/DSC4(b): Machine Learning
Unit – I	Basics of Machine Learning: Introduction to artificial Intelligence and machine learning, types of machine learning and its comparisons, applications of machine learning, issues in machine learning.
Unit – II	Preparing to Model: Introduction, machine learning activities, types of data in machine learning, exploring structure of data, data pre-processing (dimension reduction and feature subset selection), model selection.
Unit – III	Supervised Learning: Introduction, classification (introduction, classification model, learning steps, common classification algorithm), regression (linear regression, multivariable regression, logistic regression).
Unit – IV	Unsupervised Learning: Introduction and its applications, techniques in unsupervised learning (clustering, K-means). Neural Network: Introduction, architecture of artificial neural network.
	Text/Reference Books
Text Books	<ol> <li>Tom M. Mitchell, Machine Learning, McGraw-Hill Education (India) Private Limited.</li> <li>EthemAlpaydin, Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press.</li> </ol>
Reference Books	<ol> <li>Stephen Marsland, Machine Learning: An Algorithmic Perspective, CRC Press.</li> <li>Peter Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data, Cambridge University Press.</li> <li>Peter Harrington, Machine Learning in Action, Manning</li> <li>ShaiShalevShwartz and Shai Ben David, Understanding Machine Learning From Theory to Algorithms, Cambridge University Press</li> </ol>





#### MCA/GEN/4/DSC4(c):Genetic Algorithms

Course Type	Course	Contact	,		ım M	arks	3	Exam	Assessment
	Credit	Hours/ Week	Mode	External	Internal		ıl	Duration	Methods
Optional Theory	04	04	Lecture	70		30		3 Hours	TEE/MTE/ Assignment/
,					20	5	5		Attendance

**Instructions to paper setter for Final-Term Examination:** The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

**Course Objectives:** To study fundamental concepts of evolutionary algorithm, genetic algorithm, their applications, genetic operators, the theoretical Analysis of Evolutionary Algorithms , Niche and Speciation

<b>Course Outcomes</b>	At the end of	this course, the s	tudent will be a	ble to:								
CO1	define conce	pts of: evolution	onary algorith	ns, population,	gene, alleles,							
	phenotype, fit	ness function, cr	ossover, selecti	on and mutation								
CO2		escribe/explain: crossover, selection mutation, Diploid, dominance,										
	•	beyance, Niche and Speciation.										
		nderstand: application of genetic algorithms for job shop scheduling										
	problems.											
CO3	,	se: encoding scheme, crossover, selection, mutation operators and fitness										
	scaling.											
CO4		differentiate: evolutionary algorithms and traditional algorithms, types of										
		crossover, mutation, selection, inversion and reordering operator, crowding										
	and restricted											
CO5		efend: crossover,	mutation and	selection opera	ators of genetic							
	algorithms.											
CO	<b>)-PEO Mapping</b>	Matrix for Cou	irse MCA/GE	N/4/DSC4(c)								
COs	PEO1	PEO2	PEO3	PEO4	PEO5							
CO1	1	3	1	3	3							
CO2	2	3	1	3	3							
CO3	3	3	1	3	3							





CO4		3 3 1 3 3								3	3		
CO5		3		3			1		3	ĺ	3	3	
Average		2.4		3			1		3		3	3	
	CO-PO	Mappin	g Mat	rix f	or Co	ırse M	CA/G	EN/4/	DSC4(	c)			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	3	-	-	-	-	-	
CO2	2	1	1	3	1	-	3	-	-	-	-	-	
CO3	3	1	1	3	3	-	3	-	-	-	-	-	
CO4	2	1	1	3	1	-	3	-	-	-	-	-	
CO5	2	1	3	1	3	-	3	-	-	-	-	-	
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	-	-	-	
	CO-PSO Mapping Matrix for Course MCA/GEN/4/DSC4(c)												
COs	P	PSO1 PSO2 PSO3 PSO4 PSO5											
CO1		3		1			3		1		-	-	
CO2		3		1		3			2		-	-	
CO3		3		1			3		3		-	-	
CO4		3		1			3		3		-		
CO5		3		1			3		3		-	-	
Average		3		1			3		2.6		-	-	
		MCA/G			se Co 4(c): (		: Algo	rithms	;				
Unit - I	Introduct algorithm algorithm traditiona	n, advan n - biolog	tage ical aı	of e	voluti I, intro	onary duction	algori 1 of ge	thm,	applica	tion c	of evol	utionary	
Unit - II	Genetic r phenotyp advantag	e and f	itness	fun	ction.	simple	e gen						
Unit - III	Operators Boltzmar Crossove crossover represent Mutation for real-v	nn selection and its and its ation. and its alued rep	types ed cre types: present	s: Sinossov Flip tation	ngle p ver, u oping,	oint cr niform Interch	ossove cros nanging ate, mu	er, two sover, g, reve	point crosso rsing, rate an	crosso over f replace d conv	over, more real control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contr	ultipoint l-valued nutation criteria	
Unit - IV	Theoretic abeyance									oia, c	omman	ice and	





	Niche and Speciation: Fitness sharing, crowding and restricted mating. Application of GA: Genetic Algorithm for job shop scheduling problems (JSSP).										
Text/Reference Books											
Text Books	<ol> <li>S.N. Sivanandam, S.N. Deepa, Introduction to Genetic Algorithms, Springer.</li> <li>Mitchell, Melanie, An Introduction to Genetic Algorithms, United Kingdom, MIT Press, 1998.</li> </ol>										
Reference Books	<ol> <li>Goldberg, David Edward, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 2002.</li> <li>D. Nagesh Kumar, Multicriterion Analysis in Engineering and Management, PHI Learning, 2010.</li> <li>Lance Chambers, The Practical Handbook of Genetic Algorithms: Applications, 2e, United Kingdom, CRC-Press, 1995.</li> </ol>										

MCA/GEN/4/DSC5(a): Data Warehousing and Data Mining										
Course Type	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment			
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods			
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance			

Course Objectives: The objective of this course is to get the students familiar with different concepts of data warehouse and data mining, namely, OLAP, Association rule mining, classification and prediction.

Course Outcomes	At the end of this course, the student will be able to:
CO1	define: the concepts of data mining, data pre-processing, outliers, data warehouse ,OLAP , association rule mining, data classification prediction and cluster Analysis.
CO2	describe: key process of data mining ,data warehousing, OLAP, data warehousing to data mining , association rule, classification and prediction methods.
CO3	apply: OLAP technology and association rules. use: decision induction, Bayesian and back prorogation classification methods.
CO4	differentiate: operational database systems and data warehousing, single dimensional and multidimensional association rules, and between various data mining classification methods.





	CO5	eva	luate:	data	minin	g and	data	wareh	ouse,	OLAI	e techn	ology,	single	
			l multi-											
	(	CO-PE	O Map	ping I	Matrix	for C	ourse !	MCA/	GEN/4	I/DSC	5(a)	1		
	Cos	]	PEO1		PEC	)2		PEO3	3	PI	EO4	Pl	EO5	
CO1			1		3			1			3		3	
CO2			2		3			1			3		3	
CO3			3		3			1			3		3	
CO4			3	Î	3			1			3		3	
CO5			3		3			1			3		3	
A	Average		2.4		3			1			3		3	
		CO-P(	) Mapp	oing M	[atrix 1	for Co	urse I	MCA/(	GEN/4	/DSC5	<b>5(a)</b>			
	Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1		1	3	1	1	1	-	3	-	_	1	-	-	
CO2		2	1	1	3	1	-	3	-	-	1	-	-	
CO3		3	1	1	3	3	-	3	-	-	1	-	-	
CO4		2	1	1	3	1	-	3	-	-	1	-	-	
CO5		2	1	3	1	3	-	3	-	-	1	-	-	
Av	verage	2	1.4	1.4	2.2	1.8	-	3	-	-	1	-	-	
	(	CO-PS	O Map	ping N	Aatrix	for Co	ourse ]	MCA/	GEN/4	I/DSC	5(a)			
	Cos	I	PSO1		PSO	2		PSO3		PS	SO4	PS	PSO5	
CO1			3		1			3			1		-	
CO2			3		1			3		2		-		
CO3			3		1			3			3		-	
CO4			3		1			3			3		-	
CO5			3		1			3			3		-	
A	Average		3		1			3		2	2.4		-	
	Course Content MCA/GEN/4/DSC5(a): Data Warehousing and Data Mining													
U	nit I	Data N				. ,							process.	
Unit I  Data Mining: Introduction: Motivation, Importance, Knowledge discovery process, data mining, kind of data, Functionalities, interesting patterns, classification of data mining system, Major issues, Data Mining Primitives. Data Pre-processing: Data cleaning, Data Integration and transformation, Data reduction, Discretization and concept hierarchy generation. Data visualization. Outliers, Types of Outliers and challenges of Outlier Detection.														
Un											-		rehouse ouse, A	





	Multidimensional Data Model, Data warehouse Architecture, Data warehouse Implementation, data warehousing to data mining, Data warehouse usage.
Unit - III	Association Rule Mining: Mining single-dimensional Boolean association rules from transactional databases, mining multilevel association rules from transaction databases, Mining multidimensional association rules from relational databases and data warehouses, From association mining to correlation analysis, constraint-based association Mining.
Unit - IV	Data Mining-Classification and Prediction: issues regarding classification and prediction, classification by decision induction, Bayesian classification, classification by back propagation, classification based on concepts from association rule mining other classification methods.  Cluster Analysis: What is Cluster Analysis, Types of Data in Cluster Analysis, Applications and Trends in Data Mining.
	Text/Reference Books
Text Books.	<ol> <li>Ale Berson, Stephen Smith, KorthTheorling, Data Mining, Tata McGraw Hill.</li> <li>Pieter Adriaans and DolfZantinge, Data Mining, Addison-Wesley Longman.</li> <li>Sam Anahory, Data Warehousing in the Real World, Addison-Wesley Longman.</li> </ol>
Reference Books	1. Chanchal Singh, Data Mining and Warehousing, Wiley.

	MCA/GEN/4/DSC5(b): Big Data Analytics										
Course	Course	Contact	Delivery	Maxim	ım Marks	Exam	Assessment				
Туре	Credits	Hours/ Mode Week		Externa 1	Internal	Duration	Methods				
Optional Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance				

**Course Objectives:** The objective of this course is to get the students familiar with different concepts of Big Data and their realization/implementation using Hadoop and Map Reduce tool sets.

<b>Course Outcomes</b>	At the end of this course, the student will be able to:										
CO1	lefine: Big Data and Hadoop, digital data, Apache Hadoop, analysing Data										
	with Unix tools and Hadoop, Hadoop Streaming, Hadoop Echo System,										
	IBM Big Data Strategy, HDFS, Hadoop Ecosystem, Pig, Hive shell and										
	services, HBasics, Big SQL.										
CO2	understand and describe: Big Data and Hadoop, Analysing Data with										
	Hadoop,										
	Hadoop Streaming, Hadoop Echo System, IBM Big Data Strategy,										





	Hadoop Distributed File System, command line interface, job scheduling, shuffle and sort, task execution, Hadoop Ecosystem, Pig, HiveQL, Hbase.							
CO3	apply and use: Apache Hadoop, HDFC, HBasic, Big Data and Hadoop, HDFS command line interface, Hadoop file system interfaces, data flow, Hive services.							
CO4	classify: Big Data and Hadoop, Big Data Analytics, Apache Hadoop, HDFS ,Hive shell, Hive services.							
CO5	Compare feature set of Pig, Hadoop, HDFS.							

Cos	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3
CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
Average	2.4	3	1	3	3

## CO-PO Mapping Matrix for Course MCA/GEN/4/DSC5(b)

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12
CO1	1	3	1	1	1	-	3	-	-	1	-	-
CO2	2	1	1	3	1	-	3	-	-	1	-	-
CO3	3	1	1	3	3	-	3	-	-	1	-	-
CO4	2	1	1	3	1	-	3	-	-	1	-	-
CO5	2	1	3	1	3	-	3	_	-	1	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	1	-	_

## CO-PSO Mapping Matrix for Course MCA/GEN/4/DSC5(b)

Cos	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	1	3	1	-
CO2	3	1	3	2	-
CO3	3	1	3	3	-
CO4	3	1	3	3	-
CO5	3	1	3	3	-
Average	3	1	3	2.4	-

# Course Content MCA/GEN/4/DSC5(b): Big Data Analytics

Unit I

Introduction to Big Data and Hadoop: Types of digital data, introduction to Big Data,Vs of Big Data, Big Data Analytics, History of Hadoop, Apache Hadoop, analysing Data with Unix tools, Analysing Data with Hadoop, Hadoop Streaming, Hadoop Echo System, IBM Big Data





2

HDFS (Hadoop Distributed File System):The design of HDFS, HDFS concepts, command
ine interface, Hadoop file system interfaces, data flow, data ingest with flume and Scoop and Hadoop archives, Hadoop I/O: compression, serialization, Avro and file-based data structures.
Map Reduce: Anatomy of a Map Reduce job run, failures, job scheduling, shuffle and sort, ask execution, Map Reduce types and formats, Map Reduce features.
Hadoop Ecosystem: Pig: Introduction to Pig, execution modes of Pig, comparison of Pig with databases, grunt, Pig atin, user defined functions, data processing operators. Hive: Hive shell, Hive services, Hive metastore, comparison with traditional databases, HiveQL, tables, querying data and user defined functions. Hoase: HBasics, concepts, clients, example, Hbaseversus RDBMS. Big SQL: Introduction
Text/Reference Books
Tom White "Hadoop: The Definitive Guide" Third Edit on, O'reily Media, 2012. SeemaAcharya, SubhasiniChellappan, "Big Data Analytics", Wiley 2015. ArvindSathi, "BigDataAnalytics: Disruptive Technologies for Changing the Game", MC Press.
<ol> <li>Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007.</li> <li>Jay Liebowitz, "Big Data and Business Analytics" AuerbachPublications, CRC press (2013)</li> <li>AnandRajaraman and Jeffrey David Ulman, "Mining of Massive Datasets", Cambridge University Press, 2012.</li> <li>Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley &amp;Sons, 2012.</li> </ol>
2. a H H H H L

	MCA/GEN/4/DSC5(c): Data Science											
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment					
	Credit Hours/Week Mode		Mode	External	Internal	Duration	Methods					
Optional Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance					

**Course Objectives**: The objective of this course is to get the students familiar with the concepts and processes of Data Science including collection, filtering, processing, analysis and visualization.





<b>Course Outcomes</b>	A	At the	end of t	this cour	rse, the	student	will b	e able	e to :				
CO1	d ii d	lata an nferen latabas	alysis t ce etc., se, and	echniqu neural r visualiza	es-corre network ation.	elation, t, fuzzy	regres logic,	sion, rule	ta, big dat mean, mo of mining	ode, kur g, hadoo	tosis, Bapp, hive,	ayesian cloud	
CO2	d to	lata, ev echniq	volution ues, Ba	n of anal ayesian i	lytic sca model a	alability and netw	, samp vork, i	ling nduct	n of data, distributition rule, nework an	on, data neural n	analysi etwork,	s fuzzy	
CO3	u a te	ise: da nalysi echniq	ta scien s techn	iques, B	ess, mo ayesian	dern da netwoi	ta anal rk, ind	ytic t uction	cools, stati n rule, fuz database	stical cozy	oncepts, c, data n	data	
CO4	S	categorize: analytic processes and tools, analysis, reporting, sampling and resampling, data analysis techniques, linear and non-linear time series, sequential, temporal and spatial mining, egonets systems and application.											
CO5	s	choose: data science process, data storage, data analytic tools and processes, sampling method, data analysis technique, time series, mining techniques, visual data analysis framework and technique suitable in given situation.											
	CO-P	EO M	apping	g Matri	x for C	ourse N	ACA/(	GEN/	/4/DSC5(	c)			
Cos	PE	O1		PEO2		P	EO3		PEO	4	PI	EO5	
CO1		1		3			1	ĺ	3	İ	3		
CO2	2	2	ĺ	3		1			3	İ		3	
CO3	3	3		3		1			3			3	
CO4	3	3	ĺ	3		1			3	İ		3	
CO5	3	3		3			1		3			3	
Average		.4		3			1		3			3	
	CO-I	PO Ma	apping	Matrix	for Co	urse M	ICA/G	EN/4	4/DSC5(c	)			
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	3	-	-	1	-	-	
CO2	2	1	1	3	1	-	3	-	-	1	-	-	
CO3	3	1	1	3	3	-	3	-	-	1	-	-	
CO4	2	1	1	3	1	-	3	-	-	1	-	-	
CO5	2	1	3	1	3	-	3	-	-	1	-	-	
Average	2	1.4	1.4	2.2	1.8	_	3	-	-	1	-	-	
	CO-P	SO M	apping	g Matrix	x for C	ourse N	ICA/(	EN/	4/DSC5(	2)			
Cos	P	SO1		PSO	2	P	SO3		PSO	4	PS	SO5	
CO1		3	1 3						1			-	
CO2		3		1			3		2			-	
CO3		3		1		3			3		-		
CO4		3		1		3			3		-		
CO5		3		1			3		3			-	





Average		3	1	3	2.4	-
		M	Course Co CA/GEN/4/DSC5(			
Unit I	data data proc	oduction to Date, graphical pre- control of the control  Science: data so sentation of data, c conventional syste , analysis vs report	cience process, exclassification of dams, web data, evol	nta, storage and a lution of analytic analytic tools;	nalysis, collection of retrieval of data, big e scalability, analytic nference, prediction	
Unit – II	varia regr netv	ables, analysis ession modelin vorks, support v	using mean, me	dian, mode, stand nalysis, Bayesian nethods;	dard deviation, modeling, infe	probability, random skewness, kurtosis, rence and Bayesian
Unit – III	Fuzz metl Asso	petitive learning Logic: extra hods, neuro fuz ociation Rule 1	ng, principal componenting fuzzy mode zy modelling,	nent analysis and als from data, fuz	neural networks; zy decision tree	and generalization, es, stochastic search rn mining, temporal
Unit – IV	NoS visu	QLdatabases, al data analysi	cloud databases, S	S3, Hadoop Distraction techniques	ibuted File Syst	op, Hive, sharding, tems, visualizations, k analysis,collective
			Text/Referen	ce Books		
Text Books.	2.		-			ger, 2007. atasets", Cambridge
Reference Books		Streams with A	aming the Big Data dvanced Analytics ichelineKamber "D	", John Wiley & S	ons, 2012.	· ·





- 3. Rachel Schutt, Cathy O'Neil, "Doing Data Science", O'Reilly Publishers, 2013.
- 4. Foster Provost, Tom Fawcet, "Data Science for Business", O'Reilly Publishers, 2013.
- 5. Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications", Wiley Publishers, 2014.

#### MCA/Gen /4/SEC2: Project Work

Course Type	Course	Contact	Delivery	Maximum Marks		Exam	Assessment Methods
	Credit	Hours/Week	Mode	External	Internal	Duration	
Core Compulsory Project Work	08	16	Project Work	150	50	1	Teacher Interaction/ Project Report/ Viva Voce

**Instructions to paper setter for Final-Term Examination:** The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of project report and a presentation based viva voce exam.

**Course Objectives:** To expose students to the realm of software development by working on some real-life problem. Students get to apply the principles of software development in practice and apply one of the several software development paradigms.

<b>Course Outcomes</b>	At the end of	this course, the stu	dent would have	learnt to:							
CO1	enumerate va	arious software dev	elopment paradi	gms and steps/p							
		general concepts in									
CO2		and describe vari-									
		therein as well as t	the general conce	epts in software	development						
	life cycle.										
CO3		use/apply the principals and practices of software engineering in real-life									
G0.4		elopment project w									
CO4	•	classify software development environments, paradigms, tools and									
COF		technologies based on various parameters.  choose (and justify) between the competing technologies and software									
CO5											
	-	development paradigms that suit to particular type of software development project.									
CO6	design and develop software systems for simple real-life problems										
	individually and complex systems as a member of team.										
		ping Matrix for Cou									
Cos	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	3	3	3	3						
CO2	2	3	3	3	3						
CO3	3	3	3	3	3						
CO4	3	3	3	3	3						
CO5	3	3 3 3 3									
CO6	3	3	3	3	3						





Average		2.5		3			3			3		3
	CO	-PO Ma	pping	Matrix	for Co	ourse N	MCA/(	Gen /4	/SEC2		ı	
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	3	3	3	3	1	3	-	3	3
CO2	2	3	1	3	3	3	3	2	3	-	3	3
CO3	3	3	1	3	3	3	3	3	3	-	3	3
CO4	3	3	1	3	3	3	3	3	3	-	3	3
CO5	3	3	3	3	3	3	3	3	3	-	3	3
CO6	3	3	3	3	3	3	3	3	3	-	3	3
Average	2.5	3	1.6	3	3	3	3	2.5	3	-	3	3
	CO-	PSO M	apping	Matri	x for C	ourse	MCA/	Gen /4	I/SEC2	2		
Cos	PS	SO1		PSO2			PSO3		PSO4		PSO5	
CO1		3	Ì	3			3			1		3
CO2		3		3			3			2		3
CO3		3		3			3		3			3
CO4		3		3			3		3			3
CO5		3		3			3		3			3
CO6		3		3			3		3		3	
Average		3		3			3		2.5			3





MCA/G	MCA/GEN/4/CC21: Software Lab based on MCA/GEN/4/CC19(Python Programming)												
Course Type	Course Type   Course   Contact   Credit   Hours/We		Delivery	Maxim	ım Marks	Exam	Assessment						
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Practical	02	04	Practical/ Lab Work	50	-	-	TEE/ Practical File						

**Instructions to paper setter for Final-Term Examination:** The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the basis of practical file, performance in practical exam and a viva voce exam.

Course Objectives: The objective of this course is to get the students hands on practice with scripting/programming concepts of Python language as covered in course MCA/GEN/4/CC19.

Course Outcomes	At the end of this course, the student will be able to:										
CO1	define: insta	llations, working,	structures cont	rol statements	operators						
CO2	lists ,object oriented programming concepts, python libraries.										
	explain: conditional & control statements ,strings, OOPs ,file handling concepts ,libraries and packages of python programming.										
CO3					das						
		use: various python libraries such as numpy, matplotlib ,pandas . apply: python programming constructs to solve real world problems.									
CO4		atatypes,dictionar									
	ns,python li	• • •	ics,conditionale	econtroistatem	chts,runctio						
COS	<u> </u>	oraries.									
CO5	compare:		10 . 1 .		. 9						
	datatypes,dictionaries,conditional&controlstatements,functions,python										
	libraries.										
CO6	design:basic	and advanced ap	plications in pyt	thon.							
	CO-PEO Map	ping Matrix for Co	ourse MCA/GEN	N/4/CC21							
COs	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	3	3	3	3						
CO2	2	3	3	3	3						
CO3	3	3	3	3	3						
CO4	3	3	3	3	3						
CO5	3	3 3 3 3									
CO6	3	3	3	3	3						





Average		2.5		3			3			3		3
	CO-	PO Ma	pping	Matri	x for C	Course	MCA	/GEN/	4/CC2	1	ı	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	1	-	-	-	-
CO2	2	1	1	3	1	-	3	2	-	-	-	-
CO3	3	1	1	3	3	-	3	3	-	-	-	-
CO4	3	3	1	3	1	-	3	3	-	-	-	-
CO5	3	1	1	3	3	-	3	3	-	-	-	-
CO6	3	3	3	3	3	-	3	3	-	-	-	-
Average	2.5	2	1.3	2.6	2	-	3	2.5	-	-	-	-
	CO-l	PSO Ma	apping	Matr	ix for (	Course	MCA	/GEN	/4/CC2	21	I	1
COs	P	SO1		PSO	2		PSO3		PS	SO4	PS	SO5
CO1		3		1			1			1		-
CO2		3		2			2			2		-
CO3		3		3			3		3		j	-
CO4		3		3			3		3			-
CO5		3		3			3		3			-
CO6		3		3			3		3		-	
Average		3		2.5			2.5		2.5			-





MCA/C	MCA/GEN/4/CC22: Software Lab based on MCA/GEN/4/CC20(R Programming)											
Course Type	Course	Contact	Delivery	Maxim	ım Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Practical	02	04	Practical/ Lab Work	50	-	-	TEE/ Practical File					

**Instructions to paper setter for Final-Term Examination:** The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

**Course Objectives:** The objective of this course is to get the students hands on practice with scripting/programming concepts of R programming language as covered in course MCA/GEN/4/CC20.

Course Outcomes														
Course Outcom	es											•		
CO1											alization		£1	
CO2			scribe: nctions		•			naking	g statei	ments,	loops,	user de	rinea	
								davno	ort of c	lata in	text file	a avca	l filo	
			d MYS	-	occss (	or ուռբ	ort an	и схрс	nt or c	iaia 111	text III	c, cacc	i iiic	
CO3			e: vari		built .	user d	efined	l funct	ion an	d pack	ages .			
										-	d probl	ems.		
CO4											ts, in b			
			er defi											
CO5			ompare: datatypes, conditional & control statements, functions,											
			ackages in R programming.											
CO6		de	esign:basic and advanced applications in R programming.											
CO-PEO Mapping Matrix for Course MCA/GEN/4/CC22														
COs		P	PEO1 PEO2 PEO3 PEO4 PEO5											
CO1			1		3			3			3		3	
CO2			2		3			3			3		3	
CO3			3		3			3			3		3	
CO4			3		3			3			3		3	
CO5			3		3			3			3		3	
CO6			3		3			3			3		3	
Average			2.5		3			3			3		3	
	C	O-P	O Ma	pping	Matri	x for C	Course	MCA/	GEN/	4/CC2	2			
COs	РО	1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1		3	1	1	1	-	3	1	-	-	-	-	
CO2	2		1	1	3	1	-	3	2	-	-	-	-	
CO3	3		1	1 3 3 - 3 3							-			
CO4	3		3 1 3 1 - 3 3								-			
CO5	3		1	1 3 3 - 3 3							-			
CO6	3		3	3	3	3	-	3	3	-	-	-	-	
Average	2.5	5	2	1.3	2.6	2	_	3	2.5	_	-	-	-	





CO-PSO Mapping Matrix for Course MCA/GEN/4/CC22					
COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	1	1	1	-
CO2	3	2	2	2	-
CO3	3	3	3	3	-
CO4	3	3	3	3	-
CO5	3	3	3	3	-
CO6	3	3	3	3	-
Average	3	2.5	2.5	2.5	-



