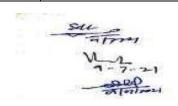
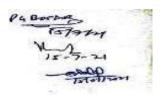
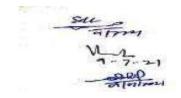
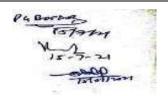

	MTech/CSE/PT/1/CC1: Advanced Database Systems											
Course Type	Course Contact		Delivery	Maximu	m Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance					


Course Objectives: The objective of this course is to get the students familiar with different concepts related to database.

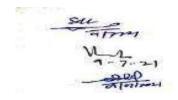

Course Outcomes	At the	end of th	nis cours	e, the stu	dent wil	l be able	e to:					
CO1				ecture, El				el, func	tional	depende	encies, r	normal
				s in SQL				echniqu	ies, dat	abase s	ecurity	issues,
				and client								
CO2				relationa								
		rms, SQL constraints and views, recovery techniques, data warehouse, and distributed atabases.										
CO3		pply: inheritance, SQL statements, normal forms, SQL constraints, dependencies, data										
				ontrol and						•		
CO4				super c								
				es, data s							_	
CO5				class, ir								raints,
00.6		unctional dependencies, security, concurrency control and recovery techniques.										
CO 6 design: database for a particular application.												
CO-PEO Mapping Matrix for Course MTech/CSE/PT/1/CC1												
COs	PEO!	1	PE	EO2		PEO3		PF	EO4		PEO:	5
CO1	1		1			3			3		3	
CO2	2		2			3			3		3	
CO3	3			3		3			3			
CO4	3			3		3			3		3	
CO5	3			3		3			3		3	
CO 6	3			3		3	ĺ		3	İ	3	
Average	2.5	2.5 2.5 3 3 3										
	CO-l	PO Map	ping M	atrix for	Course	MTech	/CSE/I	PT/1/C	CC1			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	1		-	-	-	1	3

CO2	2	2 1 1 3 1					1	_	-	-	-	2	3
CO3	3	1	1	1 3			1	-	-	-	_	3	3
CO4	3	3	1	3	1		1	_	-	-	_	3	3
CO5	3	1	1	1	3		1	-	-	-	_	3	3
CO 6	3	3	3	3	3		1	_	-	-	-	3	3
Average	2.5	2	1.33	2.33	2		1	-	_	-	_	2.5	3
	CO-PSO Mapping Matrix for Course: MTech/CSE/PT/1/CC1												
COs	PS	PSO1 PSO2 PSO3 PSO4 PSO5											5
CO1		3		2			1			-		3	
CO2		3		2			2			-		3	
CO3		3		2			3			-		3	
CO4		3		2			3			-		3	
CO5		3		2			3			-		3	
CO 6		3		2			3			-		3	
Average	3 2 2.5 - 3												
	Course Content MTech/CSE/PT/1/CC1: Advanced Database Systems												
Unit - I	Independent Constrair Inheritar specialization	dence, I ints and nce, Sp zation ar	ER Diag Relatio pecializand Gener	grams, Nonal Dat tion an	aming abase d Go n. Rela	g con Sch enera ation	nventionemas, alizational al Mod	ons an EER on, Co del: Re	d Desi model onstrai	ign Iss : Subc nts ar	ues. R classes nd ch	ecture ar elational , Super aracterist cepts, Re	Model classes, tics of
Unit - II	forms b	oased or oosition,	n Prima: Multiva	ry keys: ilued de _l	1NF pende	7, 2N ncies	NF, 31 and	NF and 4NF, .	d BCN JOIN (NF, Prodepende	opertie encies	dencies, es of Re and 5N n SQL, V	lational F. SQL
Unit - III Introduction to Transaction processing: Concepts, Concurrency control techniques, Database recovery techniques: Deferred update and Immediate update, ARIES Recovery algorithm, Shadow paging, Database security issues													
Unit - IV Data Warehousing: Components, Building a data warehouse, Data extraction, cleanup and transformation, OLAP Future Trends in data models: Semantic data models, Active and Spatial databases, Temporal databases, Multimedia databases, Distributed Database concepts and Client Server Architecture													
Text/Reference Books													
Text Books								•				ley, New ational E	



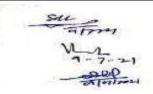

Reference Books	1. C.J. Date: An Introduction to Database System, 7e, Addison Western New Delhi.
	2. Abbey Abramson & Cory: ORACLE SI-A Beginner's Guide Tata McGraw Hill
	Publishing Company Ltd.
	3. Hector G.M., Ullman J.D., Widom J., "Database Systems: The Complete Book",
	Pearson Education.

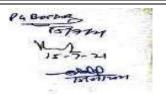
	MTech/CSE/PT/1/CC2: Advanced Data Structures										
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment				
	Credit	Hours/Week	/Week Mode Exte		Internal	Duration	Methods				
Compulsory Theory	04	04	04 Lecture 70		30	3 Hours	TEE/MTE/ Assignment/				
					20 5 5		Attendance				


Course Objectives: The objective is to make students to learn different algorithms analysis techniques, analyse the efficiency of algorithm, apply data structures and algorithms in real time applications.

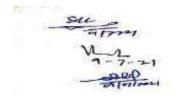

Course Outcomes	At the end of this cou	At the end of this course, the student will be able to:								
CO1		identify: data type, time and space complexity, stack, queue, linked list, trees, graph, searching, sorting and hashing.								
CO2		understand and explain: abstract data types, stack, queue, linked list, tree, and graph, searching, sorting, and traversing algorithms and hashing function.								
CO 3	11 0	apply and use: various data types, algorithms, stack, queue and link list operations, tree traversal operation, graph representation and traversals algorithms, and searching sorting techniques on data.								
CO 4	distinguish: time and linked list, binary, A' Dijkstra's and Kruska	VL, B tree and mult	iway search tre	e, depth and breadth	first search,					
CO5	select: algorithm, dat in a given situation.	a representation tecl	nnique, searchi	ng and sorting techn	ique suitable					
CO 6	design: algorithm, sta	ack, queue, linked lis	st, trees, graph,	searching, sorting ar	nd hashing.					
	CO-PEO Mapping Matrix for Course MTech/CSE/PT/1/CC2									
COs	PEO1	PEO2	PEO3	PEO4	PEO5					

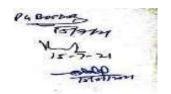
														-
CO1	1				1			3		3			3	
CO2		2			2			3		3			3	
CO3		3		3			3		j	3			3	
CO4		3			3		3			3			3	
CO5		3			3			3		3			3	
CO 6		3			3			3		3			3	
Average		2.5		,	2.5			3		3			3	
	CO-PO Mapping Matrix for Course MTech/CSE/PT/1/CC2													
COs	PO1	P02	PO3	PO4	PO5	P06	DO7	Š	PO8	PO9	PO10	P011	P012	
CO1	1	3	1	1	1	-		-	-	-	-	1	3	
CO2	2	1	1	3	1	-		-	-	-	-	2	3	
CO3	3	1	1	3	3	-		-	-	-	-	3	3	
CO4	3	3	1	3	1	j -		-	<u> </u>	-	-	3	3	
CO5	3	1	1	1	3	-		-	-	-	-	3	3	
CO 6	3	3	3	3	3	-		-	-	-	-	3	3	
Average	2.5	2	1.33	2.33 2		-		-	_	-	-	2.5	3	
	CO	O-PSO	Mappi	ng Matri	ix for C	Cours	е МТ	ech/C	CSE/P	T/1/CC	2			
COs		PSO1		PSO2			PSC)3		PS	O4		PSO5	
CO1		3		3			1				-		3	
CO2		3		3			2			-			3	
CO3		3		3			3				-		3	
CO4		3		3			3				-		3	
CO5		3		3			3				-		3	
CO 6		3		3			3				-		3	
Average	3 3 2.5 -								3					
	Course Content MTech/CSE/PT/1/CC2: Advanced Data Structures													
Unit - I	Unit - I Introduction to algorithms: abstract data types, role of algorithms in computing, performance analyzing algorithms, designing algorithms, time-Space trade-offs growth of functions, asymptotic notations, Recurrences: master, substitution, recurrence tree method.													
Unit - II	ADT : stack, operations on stacks, queue &its variations, operations, types of linked list operations performed on linked list.													

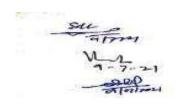



	Trees: representation, traversals, operations, applications, binary search trees, AVL trees, Splay trees, B-trees, m-way search tree, implementation of threading on binary trees.									
Unit - III	Graphs : representation, traversals(BFS, DFS, Topological sort), operations, applications, shortest path algorithms (Dijkstra's), minimum spanning trees, algorithms for finding minimum spanning tree (Kruskal, Prim's), Graph coloring.									
Unit - IV	Sorting and Searching : linear search, binary search, insertion sort, Shell sort, Heap sort, Merge sort, Quick sort, Bubble sort, Bin sort, Radix sort. Hashing : hash Function, collision resolution, deletion, perfect hash functions, hash functions for Extendible files.									
	Text/Reference Books									
Text Books	 Seymour lipschutz, Data structures with C, MacGraw Hill. Adam Drozdek, Data Structures and Algorithm in C++, India Edition. M T Goodrich, Roberto Tamassia, Algorithm Design, John Wiley. 									
Reference Books	 Alfred V. Aho, John E.Hopcroft, Jeffrey D.Ullman, Data Structures and Algorithms, Pearson Education. Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, Fundamental of Computer Algorithms, 2e, Universities Press. Yedidyah Langsam, Moshe J. Augenstein, A. M. Tenebaum, Data Structures using C and C++, 2e, Pearson Education 									

	MTech/CSE/PT/1/DSC1(i): Network Security											
Course Type	Course	Contact	ım Marks	Exam	Assessment							
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods					
Optional Theory	04	04	Lecture	e 70 3		3 Hours	TEE/MTE/ Assignment/					
Theory					20 5 5		Attendance					

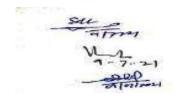

Course Objectives: To study fundamental concepts of Network Security, security attacks, cryptography, authentication, web security, system and email security.


Course Outcomes	At the end of this course, the student will be able to:
CO1	define: computer security, security standards, cipher model, encryption techniques, data encryption standards, public-key cryptography, security at transport layer, SSL/TSL attacks, wireless security and IEEE 802.11i.



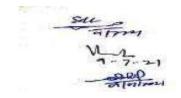
							with the					
		vanced encryption standard, RSA, concept of digital signature, security otocols, wireless security measures and email security.										
CO3	illust	ustrate: features related with computer security, encryption techniques, data cryption standards, security at transport layer and wireless LAN security.										
		ssify: information about security, its architecture, types of attacks, security										
		chanism, encryption standards, protocols at transport layer and wireless LAN										
	secur											
		nate: security trends, security mechanisms, cipher model, RSA, Diffie-Hellman exchange, transport layer security, SSL/TSL attacks, wireless security and IP										
	security.											
		•	ıg Ma	trix for	Course	МТ	ech/CSE/	PT/1/D	SC1(i)			
Cos	P	EO1		PEC)2		PEO3		PEO	4	P	EO5
CO1		1		1			3		3			3
CO2	Ì	2	Ì	2		ĺ	3		3			3
CO3		3		3			3		3			3
CO4		3		3		Ì	3		3		3	
CO5		3 3 3						3 3				
Average		2.4 2.4 3 3 3								3		
CO-PO Mapping Matrix for Course MTech/CSE/PT/1/DSC1(i)												
Cos	1	2	3	4	\cdot	9	7	×	16	0	П	2
	P01	PO2	P03	P04	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12
CO1	1	3	1	1	1	2				_	1	2
CO1	1		1	1	1			_			1	3
CO2	2	1	1	3	1	2	-	-	-	-	2	3
CO3	3	1	1	3	3	2	-	-	-	-	3	3
CO4	3	3	1	3	1	2	-	-		-	3	3
CO5	3	1	1	3	3	2	-	-	-	-	3	3
Average	2.4	1.8	1	2.6	1.8	2	-	-	-	-	2.4	3
CO-P	SO N	Aappin	ıg Ma	trix for	Course	MTe	ech/CSE/	PT/1/D	SC1(i)			
Cos		PSO	1		PSO2		PSC	3	PS	04	P	SO5
CO1	3				3		1		-			3
CO2		3			3		2		-		3	
CO3		3			3	3				3		
CO4		3 3 - 3							3			
CO5		3			3		3		-			3

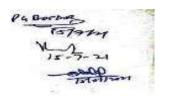
Average	3	3	2.4	-	3					
		Course Content T/1/DSC1(i) Netw	vork Security							
Unit – I Computer Security Concepts – Introduction, security, security trends, components of information system, OSI security architecture, security attacks, goals for security, security mechanisms, security standards. Cipher model, cryptanalysis and brute-force attack, classical encryption techniques – symmetric techniques – substitution techniques, transposition techniques, rotor machines, steganography.										
	Traditional block cipher; data encryption standard – encryption and decryption, advanced encryption standard – structure and expansion functions. Public-key cryptography – principles, applications and requirements; RSA, Diffie-Hellman key exchange. Concept of digital signature.									
	Security at Transport Layer, web security considerations, Transport Layer Security, TLS record protocol, change cipher spec protocol, alert protocol, handshake protocol, heart-beat protocol; SSL/TSL attacks; HTTPS; Secure shell; user authentication protocol, connection protocol.									
	Wireless Security, w strategy. Wireless LAN securi Email security, S/MI	ity, IEEE 802.11i -	services, operation	•	- threats and					
	Tex	xt/Reference Book	KS							
	 William Stallings, Cryptography And Network Security Principles And Practice, Pearson Education Forouzan, Mukhopadhyay, Cryptography & Network Security, McGraw Hill 									
	AtulKahate, Cryptography and Network Security, TMH Godbole, Information Systems Security, Wiley India Mark Stamp, Information Security Principles and Practice, Willy India									

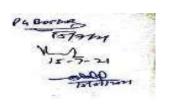


	MTech/CSE/PT/1/DSC1(ii):Advanced Computer Networks													
Course	Course	Contact	Delivery Mode	Maximu	m Marks	Exam	Assessment Methods							
Type	Credit	Hours/ Week		External	Internal	Duration								
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance							

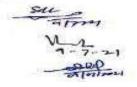
Course Objectives: The objective of this course is to get the students familiar with various networking models, different IP addressing, wireless LANS and latest network technologies.

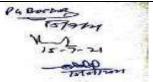

Course Outcomes	At the end of this course, the student will be able to:
CO1	define: computer networking including network models, media for transmission,IEEE standards, logical addressing, routing protocols, domain name system, world wide web, HTTP, FTP and wireless LANs.
CO2	explain: various concepts of computer networking including network models, media for transmission along with the standards followed, logical addressing, routing protocols, domain name system and wireless LANS.
CO3	apply: techniques learnt here in the design and evaluation of computer networks and decide which network models, routing protocols, logical addressing, transmission media or wireless LAN will suit a particular situation.
CO4	categorize: computer networks, network models, routing protocols, logical addressing, transmission media and wireless LANs.
CO5	choose: IEEE standards, unicast and multicast routing protocols, logical addressing, transmission media and wireless LANs.


CO	CO-PEO Mapping Matrix for Course MTech/CSE/PT/1/DSC1(ii)												
Cos	PEO1	PEO2	PEO3	PEO4	PEO5								
CO1	1	1	3	3	3								
CO2	2	2	3	3	3								
CO3	3	3	3	3	3								
CO4	3	3	3	3	3								
CO5	3	3	3	3	3								
Average	2.4	2.4	3	3	3								
Co	O-PO Mapping N	Matrix for Cours	e MTech/CSE/PT	Γ/1/DSC1(ii)	'								

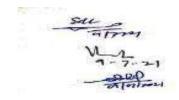

												.1
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	-	-	-	1	3
CO2	2	1	1	3	1	-	-	-	-	-	2	3
CO3	3	1	1	3	3	-	-	_	-	-	3	3
CO4	3	3	1	3	1	-	-	-	-	-	3	3
CO5	3	1	1	3	3	-	-	-	-	_	3	3
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3
CO	-PSO	Mappi	ing Ma	atrix fo	Cours	е МТе	ech/CS	E/PT/1	DSC1	ii)	1	'
Cos		PSO1		PS	SO2		PSO3		PSO ₂	4	PSC	O5
CO1		3			3		1		-		3	
CO2		3			3		2		_		3	
CO3		3			3		3		-		3	
CO4		3			3		3		-		3	
CO5		3			3		3			3		
Average		3			3		2.4		-		3	
Course Content MTech/CSE/PT/1/DSC1(ii): Advanced Computer Networks												
	Transmi Connec	ission ting L	Media ANs: (: Guided Connecti	d Media ng Dev	, Ungu ices, B	ided Nackbo	Aedia. ne Netv	e model works. met, Gig		ernet.	
J	Unicast	Routi	ng Pro	IPv4 Actocols are	nd Mult	icast R	Routing		cols			
I I		s Netv ks. IP	vork ar				AN, P	AN, Se	nsor Net	tworks a	nd Adho	ЭС
I S	Domain Space, l	Name	Systent the Ir	nd HTTF em: Nam nternet, l c, DDoS	e Space Resolut	e, Dom ion.		ame Spa	ace, Dist	ribution	of Nam	e
				Text/Re	ference	Book	is					
Text Books 1. Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems Approach, 4e, Morgan Kaufmann, 2007. 2. Jean Walrand and PravinVaraiya, High Performance Communication Networks, 2e, Morgan Kauffman, 1999.												

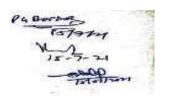
	3.	Markus Hoffmann and Leland R. Beaumont, Content Networking: Architecture, Protocols, and Practice, Morgan Kauffman, 2005.
Reference Books	1.	Behrouz A. Forouzan, Data Communications and Networking, 4e, Tata McGraw Hill, 2006.



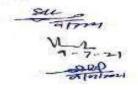


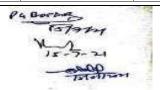
	MTech/CSE/PT/1/DSC1(iii): Wireless Networks													
Course	Course	Contact	Delivery Mode	Maximu	m Marks	Exam	Assessment							
Type	Credit	Hours/ Week		External	Internal	Duration	Methods							
Optional Theory	04 04		Lecture	70	30	3 Hours	TEE/MTE/ Assignment/							
J					20 5 5		Attendance							


Course Objectives: To study fundamental concepts in wireless network, various LAN standards, IP and IPV6 Layer, Transmission protocols and WAN standards.

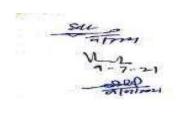

	A1 1 C	4. 4.	1 ('11.1 1.1			A1						
Course Outcomes	At the end of	this course, the st	udent will be able	to:		At the e						
CO1			cture, mobile netv	vork layer, mobile	transport layer	wireless						
CO2	_	wide area network		o IEEE 000 12 1	Qluotoeth IDV/	mobile l						
LO2			IEEE 802.11 type nhancements for w			mobile						
			tions of 4G, feature									
CO3			m architecture, ph			Transmi						
			ile ad-hoc netwo			Tansiii						
			rea network, HSD		•							
	5G.	-, <u>-</u>		, 10000100 0110 0.								
CO4	analyze: WLA	AN technologies,	802.11b, 802.11a,	IEEE 802.16, IPV	6, Routing, TCP	Wireless						
	enhancements	enhancements, TCP improvements, UMTS core network architecture, firewall,										
		3G,4G and 5G networks.										
CO5		compare: different Wireless LAN technologies, mobile network layer, mobile										
	transport layer, Mobile IP, mobile ad-hoc networks, protocols, TCP improvements											
	and wireless WAN types.											
C	O-PEO Mappi	ng Matrix for Co	ourse MTech/CSE	Z/PT/1/DSC1(iii)								
COs	PEO1	PEO2	PEO3	PEO4	PEO5							
CO1	1	1	3	3	3							
CO2	2	2	3	3	3							
CO3	3	3	3	3	3							
CO4	3	3	3	3	3							
CO5	3	3 3 3 3										
Average	2.4	2.4 2.4 3 3 3										
	CO-PO Mappin	ng Matrix for Co	urse MTech/CSE/	PT/1/DSC1(iii)	1							

C	1	1	i	<u> </u>	1	İ	1	1	Î	<u> </u>		1 1		
Cos	P01	P02	PO3	PO4	PO5	P06	PO7	P08	P09	PO10	P011	PO12		
CO1	1	3	1	1	1	-	-	-	-	-	- 1			
CO2	2	1	1	3	1	-	-	-	-	-	2	3		
CO3	3	1	1	3	3	-	-	-	-	-	- 3 3			
CO4	3	3	1	3	1	-	-	-	-	-	3	3		
CO5	3	1	1	3	3	-	-	-	-	-	3	3		
Average	2.4	1.8	1	2.6	1.8	_	-	-	_	-	2.4	3		
CO-PSO Mapping Matrix for Course MTech/CSE/PT/1/DSC1(iii)														
COs	P	SO1	F	PSO2		PSO3		PSC	D 4		PS	SO5		
CO1		3		3		1		-			3			
CO2		3 2 -								3				
CO3		3		3		3			-			3		
CO4		3		3		3			-			3		
CO5		3		3 -						3				
Average		3		3		2.4		-				3		
	N	//Tech/	CSE/P	Cours T/1/DSC	e Conter C1(iii): V		Netwo	rks						
Unit – I Unit - II	spectru layer, Archite IEEE80 Mobile	m -IEE 802.11t ecture, 02.16-W	E802.1 o, 802. Radio VIMAX rk Lay	1: System 11a – Hone Layer, K: Physic er: Introd	m archite liper LA Basebar al layer, duction -	ecture, pr AN: WA ad layer MAC, S Mobile	rotocol TM, I TM, I The control TP: IP	nfrared, U architect BRAN, H k manag m allocati packet de	ure, phy liperLA er Pro on for velivery,	ysical 1 N2 – tocol, WIMA Agen	layer, Blue secu X. t disc	MAC etooth: arity -		
	initiatio	on prote	ocol -		nd-hoc n			in the intage						
Unit - III	Conges TCP in	tion co	ntrol, inents:	fast retra Indirect	nsmit/fa	st recovenoping	ery, In TCP,	eless prot aplication Mobile 7 TCP over	s of mo	obility ime o	- Cl ut fre	assical eezing,		
Unit - IV	UMTS GMSC (HSDP	Core /SMS-I A)- LT	netw WMSC E netv	ork Ar C, Firew work arc	chitectur all, DN hitecture	e: 3G-3 S/DHCP and pr	MSC, -High otocol	Terrestria 3G-SGS speed I , features ures and o	SN, 30 Downling and common and common series	G-GG nk pac hallen	SN, cket	SMS- access		


	Text/Reference Books												
Text Books	 Jochen Schiller, "Mobile Communications", 2e, Pearson Education 2012. Vijay Garg, "Wireless Communications and Networking", 1e, Elsevier, 2007. 												
Reference Books	 William Stallings, Wireless Communications and Networks, Pearson/Prentice Hall of India. Erik Dahlman, Stefan Parkvall, Johan Skold and Per Beming, "3G Evolution HSPA and LTE for Mobile Broadband", 2e, Academic Press, 2008. Anurag Kumar, D. Manjunath, Joy Kuri, "Wireless Networking", 1e, Elsevier 2011. Simon Haykin, Michael Moher, David Koilpillai, "Modern Wireless Communications", 1e, Pearson Education, 2013. 												

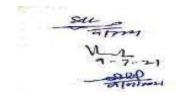

MTech/CSE/PT/1/CC3:Software Lab based on MTech/CSE/PT/1/CC1 (implementation in PL/SQL)													
Course Type	Course	Contact	Delivery Mode	Maximu	m Marks	Exam	Assessment						
	Credit	Hours/Week		External	Internal	Duration	Methods						
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical						
							File						

Instructions to paper setter for Final Term Examination: The Final Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

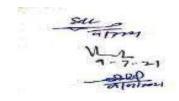

Course Objectives: The objective of this course is to get the students hands on practice with advanced concepts of database (as covered in course MTech/CSE/PT/1/CC1) and their implementation in PL/SQL.

Course Outcomes	s At the end of t	his course, the stud	ent will be able to:									
CO1			R diagrams, EER mo									
		_	concurrency contro	l techniques, databa	ase security issues,							
			server architecture.									
CO2		•	model, EER mod									
		orms, SQL constraints and views, recovery techniques, data warehouse, and distributed										
G02	databases.											
CO3	* * *	oply: inheritance, SQL queries, normal forms, SQL constraints, dependencies, data										
CO4		urity, concurrency control and recovery techniques on database.										
CO4		differentiate: subclass, super class, inheritance, SQL queries, normal forms, SQL constraints, functional dependencies, data security, concurrency control and recovery										
		echniques.										
CO5	-	justify: subclass, super class, inheritance, SQL queries, normal forms, SQL constraints,										
	•		urity, concurrency									
CO 6	-	se for a particular a		•	.							
	CO-PEO Ma	apping Matrix for	Course MTech/CS	SE/PT/1/CC3								
COs	PEO1	PEO2	PEO3	PEO4	PEO5							
CO1	1	1	3	3	3							
CO2	2	2	3	3	3							
CO3	3	3	3	3	3							
CO4	3	3	3	3	3							

CO5	3			3		3		3		Ì	3	
CO 6	3		,	3		3		3			3	
Average	2.5	2.5		2.5		3	Ì		3		3	
	CO-	PO Map	ping Ma	atrix for	Cours	Course MTech/CSE/PT/1/CC3						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	1	-	-	-	-	1	3
CO2	2	1	1	3	1	1	-	-	-	-	2	3
CO3	3	1	1	3	3	1	-	-	-	_	3	3
CO4	3	3	1	3	1	1	-	-	-	-	3	3
CO5	3	1	1	1	3	1	-	-	-	_	3	3
CO 6	3	3	3	3	3	1	-	-	-	_	3	3
Average	2.5	2	1.33	2.33	2	1	-	-	-	-	2.5	3
	СО-Р	SO Maj	pping M	atrix for	Cours	e: MTec	h/CSE	/PT/1/	CC3			
COs	PS	SO1		PSO2		PSO3		P	SO4		PSO	5
CO1		3		2		1			-		3	
CO2		3		2		2		-			3	
CO3		3		2		3					3	
CO4		3		2		3			-		3	
CO5		3		2		3			-	İ	3	
CO 6		3		2		3			-		3	
Average		3		2		2.5			-		3	



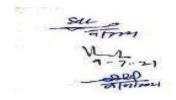
	MTech/CSE/PT/2/CC4: Advanced Web Technology												
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment						
	Credit	edit Hours/Week Mode		External	Internal	Duration	Methods						
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance						

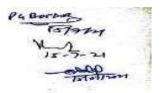

Course Objectives: The objective of this course is to get the students familiar with different concepts related with HTML, Java Scripts, Search Engines and CMS.

Time, varia sempu, seaten engines and emis.													
Course Outcome	es At the end of	At the end of this course, the student will be able to:											
CO1	define: the ba	sic concepts of H	TML, CSS, XHTM	L, HTML5, XML	JavaScript, PHP,								
			nt management sys										
CO2	describe: HTM	escribe: HTML common tags,HTML5 capabilities and use of XML, JavaScript concept											
		with PHP & MySQL, search engine techniques and optimize search results.											
CO3	*	erform: HTML tags with XML, JavaScript with PHP and MySQL queries, optimize											
	_	e result using SEC	techniques, Web	hosting and differ	ent type of CMS								
	technologies.												
CO4			with XML, building	- 1									
			optimization techn	•	ferent CMS like								
			rith help of their fea										
CO5	*	•	elationship of HTM	L, SGML and XM	Ĺ.								
		ent side or server si	•										
	•	ies on table and for	• •										
		_	higher ranking in se										
CO6			CSS,XML and Java	1 . 0	1 0								
	• -	1 0	bpages to achieve h	0	arch engine.								
	create: blog or	r websites using Co	ntent Management	System.									
	CO-PEO M	apping Matrix for	Course MTech/CS	SE/PT/2/CC4									
COs	PEO1	PEO2	PEO3	PEO4	PEO5								
CO1	1	1	3	3	3								
CO2	2	2	3	3	3								
CO3	3	3	3	3	3								
CO4	3	3	3	3	3								
CO5	3	3	3	3	3								
CO6	3	3	3	3	3								
Average	2.5	2.5	3	3	3								

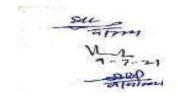
	CO-PO Mapping Matrix for Course MTech/CSE/PT/2/CC4												
COs	PO1	PO2	PO3	O3 PO4 PO		5 PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1 1		-	-	-	-	-	1	3	
CO2	2	1	1	3 1		-	-	-	-	-	2	3	
CO3	3	1	1	3	3	-	-	-	-	-	3	3	
CO4	3	3	1	3	1	-	-	-	-	-	3	3	
CO5	3	1	1	3	3	-	-	-	-	-	3	3	
CO6	3	3	3	3	3	-	-	-	-	-	3	3	
Average	2.5	2	1.33	2.66	2	-	-	-	-	-	2.5	3	
	CO-I	PSO Ma	pping M	latrix fo	r Cou	rse MTec	h/CSE/	PT/2/0	CC4				
COs	PS	SO1		PSO2		PSO3	3	F	SO4		PSO	5	
CO1		3		3		1			-		3		
CO2		3		3		2			-		3		
CO3		3		3		3			-		3		
CO4		3		3		3		-		3			
CO5		3		3		3		-		3			
CO6	1	3		3		3			-		3		
Average		3		3		2.5			-		3		
]	MTech/	CSE/PT	Cours/2/CC4:		itent nced Web	Techn	ology					
Unit - I		KML rela	ationship	betweer	_	HTML, cap ML, SGML					-		
Unit – II		SQL Fu				avaScript, eries in tab							
Unit – III		ation (SI		_	•	used by sea writing pla	•	-	•		_		
Unit – IV	CMS: Introduction, types, architecture. CMS Technologies: WordPress, Drupal, Joomla, Website Creation and maintenance, Web Hosting and Publishing Concepts.												
	•		T	ext/Refe	erence	Books							
Text Books. 1. Peter Smith, "Professional Website Performance", Wiley India Pvt. Ltd. 2. Kogent Learning, "Web Technologies: HTML, JavaScript, PHP, Java, JSP, XML, AJAX - Black Book", Wiley India Pvt. Ltd.' 3. J. C. Jackson, "Web Technologies", Pearson Education,													

Reference Books	1. Steven Holzner, PHP: The Complete Reference, Tata McGraw Hill
	2. DT Editorial Services, "HTML 5 Black Book", 2e, Wiley India, 2016.
	3. S. Potts, "JAVA 2 Unleashed", 6e, Sams Publishing, 2002


	MTech/CSE/PT/2/CC5:Advanced Computer Architecture												
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment						
	Credit	Hours/Week	ırs/Week Mode		Internal	Duration	Methods						
Compulsory 04 04 Theory		Lecture	70	30	3 Hours	TEE/MTE/ Assignment(s)/							
							Attendance						


Course Objectives: The objective of this course is to get the students familiar with different concepts related to computer architecture.

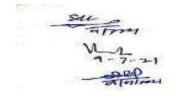
Course Outcomes	At the end of this course, the student will be able to:
CO1	define: concepts of parallel processing, computer architecture, principles of pipeline,
	collision free scheduling, ILP processors, branch handling, TLB, paging,
	segmentation, memory hierarchy technology, distributed and shared MIMD.
CO2	understand and explain: parallel processing, computer architecture, principles of
	pipeline, collision free scheduling, ILP processors, branch handling, TLB, paging,
	segmentation, memory hierarchy technology, switching and routing techniques,
	distributed and shared MIMD.
CO3	illustrate different types of: computational models, pipeline, scheduling, TLB, paging,
	segmentation, cache performance, network interconnection topologies, cache
	coherence problem and switching network.
CO4	categorize: level of parallelism, linear and non-linear pipeline, code scheduling, TLB,
	paging and segmentation, UMA, NUMA, CC-NUMA and COMA multiprocessors.
CO5	relate: concurrent and parallel execution, dependencies between instruction,
	synchronous and asynchronous pipeline, different code scheduling and hardware
	based cache coherence protocols.

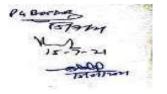

	CO-PEO Mapping Matrix for Course MTech/CSE/PT/2/CC5												
COs	PEO1	PEO2	PEO3	PEO4	PEO5								
CO1	1	1	3	3	3								
CO2	2	1	3	3	3								
CO3	3	1	3	3	3								
CO4	3	1	3	3	3								
CO5	3	1	3	3	3								
Average	2.4	1	3	3	3								

CO-PO Mapping Matrix for Course MTech/CSE/PT/2/CC5

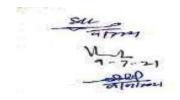
	i .	i	1	1	i .	<u> </u>	1	1	1	1	1	1 1	
COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO8		P011	P012	
CO1	1	3	1	1 1 1				-			1	3	
CO2	2	1	1	3	1	-	-	-			2	3	
CO3	3	1	1	3	3	-	-	-	-	-	3	3	
CO4	3	3	1	3	1			-	-	-	3	3	
CO5	3	1	1	3	3	-	-	-	-	-	3	3	
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3	
	CO-PSO Mapping Matrix for Course MTech/CSE/PT/2/CC5												
COs	PSO1 PSO2 PSO3 PSO4 PSO5												
CO1		3		1			1		-		3	1	
CO2		3		1			2		-		3		
CO3		3		1			3		-		3		
CO4		3		1			3		-		3		
CO5		3		1			3		-		3		
Average		3		1		2	2.4		-		3		
	3 475	1 /001				Content		A 1.					
						ced Co					1.5.1		
Unit - I	of pa archit Instru Pipeli Linea linear	rallel pectures.ction-Lning. F	evel-Fipelinine-clo	sing, Ty Parallel led instruction	ypes a Proces ruction & tim	and levensors: De procesting con	els of pependen sing, Syntrol, sp	parallel cies be ynchro beedup,	ism, Cl tween in nous & efficien	assifica nstructi Async ncy &	ons, Pri hronous through	c concepts of parallel inciples of s pipeline, nput, Non g, internal	
Unit - II	Princi delaye	ples of ed bran	pipel ching	ining, P , branch	erforn proc	nance m essing, 1	easures, multiwa	, VLIW y bran	archite archite arching, g	ecture, guarded	Branch execut	structions, handling- ion, Code	
Unit - III	mode mode Distri	scheduling- basic block scheduling, loop scheduling, global scheduling. Memory Hierarchy Technology: inclusion, coherence and locality, virtual memory models, TLB, paging and segmentation, memory replacement policies, cache addressing models, cache performance issues, interleaved memory organization. Distributed MIMD architectures: Direct interconnection networks-interconnection topologies, switching techniques, routing											
Unit - IV					-						_	switching vare based	

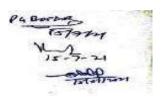
cache coherence protocol. Snoopy cache protocol, Directory scheme, and hierarchic cache coherence protocol. UMA, NUMA, CC-NUMA and COMA multiprocessors.										
Text/Reference Books										
Text Books	 Hennessy J.D., Patterson D.A., "Computer Architecture A Quantitative Approach", Elsevier India. Sima D., Fountain T., Kasuk P., "Advanced Computer Architecture-A Design Space Approach," Pearson Education. 									
Reference Books	Kai Hwang, "Advanced Computer Architecture – Parallelism, Scalability, Programmability", Tata McGraw Hill.									

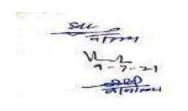




	MTech/CSE/PT/2/DSC2(i): Soft Computing												
Course Type	Course	Contact Hours/	Delivery Mode	Maximu	m Marks	Exam	Assessment						
	Credit	Week	External	Internal	Duration	Methods							
Optional Theory	•		Lecture	70	30	3 Hours	TEE/MTE/ Assignment/						
					20 5 5		Attendance						

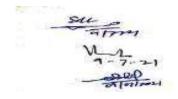

Course Objectives: The objective of this course is to cover fundamental soft computing concepts with an exposure to ANN, fuzzy Logic, optimization techniques using Genetic Algorithm (GA).

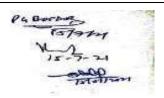

Course Outcomes	By the	By the end of this course, the student will be able to:												
CO1	recognize the concepts of: soft computing and hard computing, simple genetic algorithm, fuzzy set, neuron, neural network and activation function.													
CO2	understand and describe: the role of genetic algorithm operators, representation of fuzzy set and its operation, types of neural network and activation function including their pros and cons.													
CO3		use: algorithm i.e. genetic algorithm, fuzzy logic, ANN and their constituents for solving optimization problem.												
CO4	activat	differentiate: soft computing and hard computing, operators of genetic algorithm and activation functions of ANN. analyze: fuzzification and defuzzification.												
CO5		compare: soft computing and hard computing, operators of genetic algorithm and different activation functions of ANN.												
CO-PEO Mapping Matrix for Course MTech/CSE/PT/2/DSC2(i)														
COs		PEO1		PEO2			PEO3]	PEO4		PE	EO5
CO1		1		1			3				3			3
CO2		2		2			3				3			3
CO3		3			3		3			3				3
CO4		3			3			3			3			3
CO5		3			3			3			3			3
Average		2.4			2.4			3			3			3
C	о-Ро	Mappi	ng M	atrix	x for C	ourse N	Tech	CSE/	PT/2/I	SC2(i)		·		
COs	PO1	PO2	PO3		P04	PO5	P06 P07 P08		P09	PO9 PO10			P012	



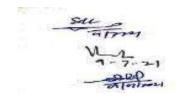
CO1		1	3	1	1	1	-	-	-	-	-	1	3	
CO2		2	1	1	3	1	-	-	-	-	-	2	3	
CO3		3	1	1	3	3	-	-	-	-	-	3	3	
CO4		3	3	1	3	1	-	-	-	-	-	3	3	
CO5		3	1	1	3	3	-	-	-	-	-	3	3	
Average		2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3	
	C	O-PSO I	Mappi	ng Mat	Matrix for Course MTech/CSE/PT/2/DSC2(i)									
COs	PSO1 PSO2 PSO3 PSO4											PS	O5	
CO1		3	3		3			1			-	3	3	
CO2	ĺ	3	3		3			2			-	3	3	
CO3	ĺ	3	3		3			3			-	3	3	
CO4		3	3		3			3			-		3	
CO5		3	3		3			3			-		3	
Average		3	3		3		2.4 - 3						3	
Unit - II Unit - III	har article for the following set ar	roduction of computational netic Algoresentatilection: Fossover a dered crontation are used representation .	n to So ating, bural ne gorithm on. Roulette and its ty esentat c: Intro assic properation ant term	ft Comporief destworks, a: Introde wheel types: Suniformypes: Frion, crooduction operties an: Intersaminolog	pt/2/Ds outing: Control of the contr	Overviews of difference genetic period genetic peri	of Soft Correction of Soft Corre	oft Comports comport gorithm, so the k, tour two portion for read revers at e and entation of the comport of the k, tour two portions of the k, tour two portions of the k, tour two portions are and entation of the k, tour two portions of the k, tour two	nputing nents of ones. simple namen int croul-value ing, relations of a converse fuzzy copertion of the compose of the compos	genetic t, boltzr ssover, red repre placeme classical r sets, co es of fuz	algorithmann selemultipoisentation ent, mutacriteria. set, repromplement zy sets,	m, its ection. nt crosso n. etion for resentati nt of fuz	over, real- on of	
Unit - IV	Composition, max-average composition. fuzzification and de-fuzzification. Unit - IV Artificial Neural Network: Basic of neural network: neuron, artificial neuron, neural network, artificial neural network, perceptron, feed forward, multilayer perceptron neural network, advantage and disadvantage of ANNs. Activation function and types of activation function. perceptron network, XOR problem. Text/Reference Books													
				16	xi/Keie	ence B	UUKS							

Text Books	 David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley. ZbigniewMichalewicz, Genetic Algorithms +Data Structures = Evolution Programs, SpringerVerlag.
Reference Books	 M. Mitchell, An Introduction to Genetic Algorithms, Prentice-Hall. S. Rajasekaran& G. A. VijayalakshmiPai, Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & Applications, PHI. S. N. Sivanandam& S. N. Deepa, Principles of Soft Computing, Wiley - India. Simon O. Haykin, Neural Networks, A Comprehensive Foundation, PHI.





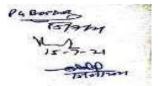
	MTech/CSE/PT/2/DSC2(ii): Machine Learning												
Course	Course			Maxim	um Marks		Exam	Assessment					
Type	Credit	Hours/ Week	Mode	External	Interna	1	Duration	Methods					
Optional Theory	04	04	Lecture	70	30		3 Hours	TEE/MTE/ Assignment/					
					20 5	5		Attendance					


Course Objectives: The objective of this course is to enable student to perform experiments in Machine Learning using real-world data.

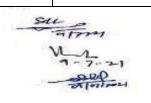
using fear-world data.												
Course Outcomes	At th	e end o	f this c	ourse, t	he stud	ent will	be able	to:				
CO1	l l	define the terms of machine learning: data-pre processing, classification, regression									ression	
		neurons										
CO2	_		types of	f: data,	data pr	e proce	essing re	egression	n, class	sification	n ,unsup	ervised
		learning.										
CO3		discuss: architecture of ANN. apply: training and testing data using data pre processing and model selection										
03											ording t	
		olem.	and on	assiiica		25103310	n, crus	tering t	cerniq	aes aee	ording t	o then
CO4			niques	of: dat	a pre p	rocessir	ng, mod	el selec	tion, re	gressio	ı, classif	fication
					technic							
CO5	comp	compare techniques of: data pre processing, supervised and unsupervised learning.										
CO-PEO Mapping Matrix for Course MTech/CSE/PT/2/DSC2(ii)												
COs	Pl	EO1		PEO2	2	F	PEO3				PEO5	
CO1		1		1			3		3		3	
CO2		2		2			3		3		3	
CO3		3		3			3		3			
CO4		3		3			3		3		3	
CO5		3		3			3		3		3	
Average	2	2.4		2.4			3		3		3	
C	О-РО	Mappi	ng Mat	rix for	Course	e MTec	ch/CSE	/PT/2/D	SC2(ii)		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	-	-	-	1	3
CO2	2	1	1	3	1	-	-	-	-	-	2	3

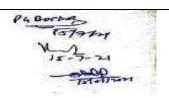
CO3		3	1	1	3	3	-	-	-	-	-	3	3
CO4		3	3	1	3	1	-	-	-	-	-	3	3
CO5		3	1	1	3	3	-	-	-	-	-	3	3
Average		2.4	1.8	1	2.6	1.8	-	-	-	- - -		2.4	3
	C	O-PSO	Mapp	ing Ma	trix for	Cour	se MTe	ch/CSI	E/PT/2/I	OSC2(i	i)		
COs		PS	O1]	PSO2		PS	O3		PSO4		PSC)5
CO1		3	3		3			1		-		3	
CO2		3	3		3			2		-		3	
CO3		3	3		3			3		-		3	
CO4		3	3		3			3		-		3	
CO5		3	3		3			3		-		3	
Average		3	3		3		2	.4		-		3	
			MTech	ı/CSE/		rse Co SC2(ii		ine Le	arning				
Unit – I	Unit – I Basics of Machine Learning; Introduction to Artificial Intelligence and Machine Learning, Types of Machine Learning and its comparisons, Applications of Machine Learning, Issues in Machine Learning.												
Unit – II	Lear	ning, E	Explorin	ig struc		data, D						a in Macl	
Unit – III	steps	s, Com	mon cla	ssificat		orithm						model, l ltivariabl	
Unit – IV	Lear	ning (C	Clusteri	ng, K-N	Means).				ns, Tech	_		upervised	I
					Γext/Re	ferenc	e Book	S					
Text Books 1. Tom M. Mitchell, Machine Learning, McGraw-Hill Education (India) Private Limited. 2. EthemAlpaydin, Introduction to Machine Learning - Adaptive Computation and Machine Learning, The MIT Press.													
Reference Book													





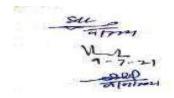
	MTech/CSE/PT/2/DSC2(iii):Artificial Intelligence											
Course	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment					
Type	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods					
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/					
Incory					20 5 5		Attendance					

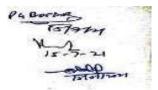

Course Objectives: Aim of this course is to familiarize the students with various techniques of artificial intelligence like predicate calculus, production rules; expert systems.


Course Outcomes	At th	e end o	of this c	ourse,	the stud	ent wi	ll be abl	e to:			At the end of this course, the student will be able to:										
CO1		define: artificial intelligence terms, types of search strategy, production system, knowledge representation, learning techniques and genetic algorithm terminologies.																			
CO2											s, knowle										
		representation and explore the theories that demonstrate intelligent behavior including intelligent editor, learning by induction and dealing with uncertainty.																			
CO3											7116										
CO4		use: search strategy, genetic algorithm, fuzzy logic and learning technique. classify types of: search strategy, production system, learning, operator of genetic																			
CO 4		algorithm, knowledge representation and approaches that deals with uncertainty.																			
CO5		compare and select types of: search strategy, production system, learning, operator of																			
		genetic algorithm, knowledge representation and approaches that deals with																			
uncertainty.																					
CO-PEO Mapping Matrix for Course MTech/CSE/PT/2/DSC2(iii)																					
Cos	PE	O1		PEO	2	PEO3			PEO4		PEO5										
CO1		1		1			3				3										
CO2		2		2			3				3										
CO3		3		3			3		3		3										
CO4		3		3			3		3		3										
CO5		3		3			3		3		3										
Average	2	.4		2.4			3		3		3										
Co	O-PO N	Aappi	ng Mat	rix foi	Course	e MTe	ch/CSE	/PT/2/D	SC2(iii	i)											
COs												ĺ									
	<u> </u>)2)3	4)5	9(7	80	60	10	=	12									
	PO1	PO2	PO3	PO4	PO5	P06	PO7	P08	P09	PO10	PO11	PO12									
CO1	1	3	1	1	1	-	-	-	-	_	1	3									

CO2	2	1	1	3	1	_	_	-	_	-	2	3
CO3	3	1	1	3	3	-	_	-	-	-	3	3
CO4	3	3	1	3	1	-	_	-	-	-	3	3
CO5	3	1	1	3	3	-	-	-	-	-	3	3
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3
	CO-PSO	Mappi	ing Ma	trix fo	r Cours	se MTe	ech/CSI	E/PT/2/D	SC2(ii	i)		
COs	PSC	D1	F	SO2		PS	SO3		PSO4		PSO)5
CO1	3	3 1 - 3										
CO2	3			3			2		-		3	
CO3	3			3			3		-		3	
CO4	3			3			3		-		3	
CO5	3			3			3		-		3	
Average	3			3			2.4		-		3	
	M	Tech/	CSE/P		rse Cor SC2(iii)		cial Int	elligence	;			
Unit – I Introduction: Background and history, Overview of AI applications areas. The predicate calculus: Syntax and semantic for propositional logic and FOPL, Clausal form, inference rules, resolution and unification. Knowledge representation: Network representation-Associative network & conceptual graphs, Structured representation-Frames & Scripts.												
Unit – II	Search iteration	n algo ve dec nax	orithms- epening etc.),	uning and compu	formed inforr tational	search ned se com	depth arch (H plexity,	first, lill climb Proper	breadth oing, be	first, d	al driven depth first, A* alg h algori	st with gorithm,
Admissibility, Monotonicity, Optimality, Dominance. Unit – III Production system: Types of production system-commutative and non-commutative production systems, Decomposable and non-decomposable production systems, Control of search in production systems. Rule based expert systems: Architecture, development, managing uncertainty in expert systems - Bayesian probability theory, Stanford certainty factor algebra, Nonmonotonic logic and reasoning with beliefs, Fuzzy logic, Dempster/Shaffer and other approaches to uncertainty												
Unit – IV Knowledge acquisition: Types of learning, learning by automata, intelligent editors, learning by induction. Genetic algorithms: Problem representation, Encoding Schemes, Operators: Selection, Crossover, Mutation, Replacement etc.												
			7	Γext/R	eferenc	e Bool	KS					
Text Books		_		_	Willia Publishi			blefield, Inc.	Artif	icial Ir	ntelligenc	e, The

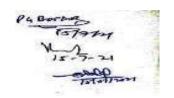
	3.	Dan W. Patterson, Introduction to Artificial Intelligence and Expert system, PHI. Wills J. Nilsson, Principles of Artificial Intelligence, Narosa Publishing House. Jackson Peter, Introduction to Expert Sytems, 3e, Addison Wesley -2000.
Reference Books		Ben Coppin, Artificial Intelligence Illuminated, Narosa Publishing House. Eugene Charniak, Drew McDermott, Introduction to Artificial Intelligence, Pearson Education.



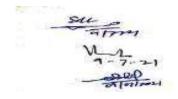

MTech/CSE/I	MTech/CSE/PT/2/CC6: Software Lab based on MTech/CSE/PT/2/CC4 (Advanced Web Technology)										
Course Type Course		Contact	Delivery	Maxim	um Marks	Exam	Assessment				
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods				
Practical	02	04	Lab Work	50	-	3 Hours	TEE/				
							Practical File				

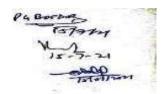
Instructions to paper setter for Final Term Examination: The Final Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

Course Objectives: The objective of this course is to get the students hands on practice with programming constructs of HTML, Java Scripts, Search Engines and CMS.

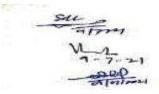

Course Outcomes	At the end of this course, the student will be able to:										
CO-1	define: the basic concepts of HTML, CSS, XHTML, HTML5, XML, JavaScript, PHP										
	MySQL, search engine and content management systems.										
CO-2	describe: HTML common tags, HTML5 capabilities and use of XML, JavaScript concep										
	with PHP & MySQL, search engine techniques and optimize search results.										
CO-3	perform: HTML tags with XML, JavaScript with PHP and MySQL queries, optimize										
	search engine result using SEO techniques, Webhosting and different type of CMS										
	rechnologies.										
CO-4	illustrate: relationship of HTML with XML, building query on tables and forms, improve										
	ranking using search engine optimization techniques, analyze different CMS like										
	Wordpress, Joomla and Drupal with help of their features.										
CO-5	compare: HTML with HTML5, relationship of HTML, SGML and XML.										
	determine: client side or server side JavaScript.										
	evaluate: queries on table and forms using MySQL.										
	choose: effective plan to achieve higher ranking in search results.										
CO-6	design: webpages using HTML, CSS, XML and JavaScript, generate various query using										
	MySQL in webpages, modify webpages to achieve higher ranking in search engine.										
	create: blog or websites using Content Management System.										
	CO-PEO Mapping Matrix for Course MTech/CSE/PT/2/CC6										
Cos	PEO1 PEO2 PEO3 PEO4 PEO5										
CO1	1 1 3 3 3										
CO2	2 2 3 3 3										
CO3	3 3 3 3										
CO4	3 3 3 3										
CO5	3 3 3 3										
CO6	3 3 3 3										
Average	2.5 2.5 3 3 3										
	CO-PO Mapping Matrix for Course MTech/CSE/PT/2/CC6										
COs	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1										

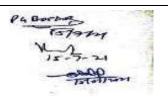
1	3	1	1	1	-	-	-	-	-	1	3
2	1	1	3	1	-	-	j -	-	-	2	3
3	1	1	3	3	-	-	-	-	-	3	3
3	3	1	3	1	-	_	-	-	-	3	3
3	1	1	3	3	-	-	-	-	-	3	3
3	3	3	3	3	-	_	Ì -	-	-	3	3
2.5	2	1.33	2.66	2	-	-	-	-	-	2.5	3
CO-PSO Mapping Matrix for Course MTech/CSE/PT/2/CC6											
PS	SO1		PSO2		PSO3		F	SO4		PSO5	5
	3		3								
1			_		1			-		3	
	3		3		2			-		3	
	3		3					-			
					2			-		3	
	3		3		2 3			-		3	
	3		3		3 3			-		3 3 3	
	2 3 3 3 2.5 CO-P	2 1 3 1 3 3 3 1 3 3 2.5 2	2 1 1 3 1 3 3 1 3 3 3 3 3 3 2.5 2 1.33 CO-PSO Mapping M	2 1 1 3 3 1 1 3 3 3 1 3 3 1 1 3 3 3 3 3 2.5 2 1.33 2.66 CO-PSO Mapping Matrix for PSO1 PSO1 PSO2	2 1 1 3 1 3 1 1 3 3 3 3 1 3 1 3 1 1 3 3 3 3 3 3 3 2.5 2 1.33 2.66 2 CO-PSO Mapping Matrix for Cours PSO1 PSO2	2 1 1 3 1 - 3 1 1 3 3 - 3 3 1 3 1 - 3 1 1 3 3 - 3 3 3 3 - - 2.5 2 1.33 2.66 2 - CO-PSO Mapping Matrix for Course MTech PSO1 PSO2 PSO3	2 1 1 3 1 - - 3 1 1 3 3 - - 3 3 1 3 1 - - 3 1 1 3 3 - - 3 3 3 3 - - 2.5 2 1.33 2.66 2 - - CO-PSO Mapping Matrix for Course MTech/CSE/PSO PSO1 PSO2 PSO3	2 1 1 3 1 - - - 3 1 1 3 3 - - - 3 3 1 3 1 - - - 3 1 1 3 3 - - - 3 3 3 3 - - - - 2.5 2 1.33 2.66 2 - - - CO-PSO Mapping Matrix for Course MTech/CSE/PT/2/O PSO1 PSO2 PSO3 F	2 1 1 3 1 -	2 1 1 3 1 -	2 1 1 3 1 - - - - 2 3 1 1 3 3 - - - - 3 3 1 1 3 3 - - - - 3 3 1 1 3 3 - - - - 3 3 3 3 3 3 - - - - 3 2.5 2 1.33 2.66 2 - - - - - 2.5 CO-PSO Mapping Matrix for Course MTech/CSE/PT/2/CC6

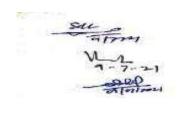




	MTech/CSE/PT/3/CC7: MATLAB Programming											
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/					
					20 5 5		Attendance					

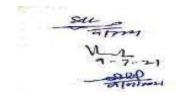

Course Objectives: The objective of this course is to study, learn, and understand the major concepts of MATLAB Programming, namely, data types, data structure, matrices, data import/export, graphics, control structure, toolboxes, image and video processing.


structure, toorboxes, mage and video processing.										
Course Outcomes	At the end of this course, the student will be able to:									
CO1		define: features, commands, data types, hierarchy of operations, matrix, tools, functions related to input/output, file handling and graphics, control structure and toolboxes used								
		it/output, file handling	g and graphics, con	trol structure an	d toolboxes used					
CO2	in MATLAB.	ory origin factures	commands data	types hierarch	y of operations					
CO2		describe: history, origin, features, commands, data types, hierarchy of operations, matrix, tools, functions related to file, function related to graphics, control structure and								
		various toolboxes of MATLAB.								
CO3	use: commands, operations, tools, menus, toolbars, input/output functions, file handling,									
		ated to graphics, 2D			ture, debugging,					
G0.4		simulink and image & video processing toolboxes in MATLAB.								
CO4	analyze: commands, data types, operations, control structure, matrix, tools, different functions related to graphics and file handling in given MATLAB program.									
CO5	determine: command, data type, tool, menu, control structure, debugging technique,									
		re or toolbox of MAT			1					
CO6	create: basic or advanced program in MATLAB using different commands, 2D and 3D plotting, functions, tools, features, simulink, fuzzy logic, neural network and image &									
				gic, neural netwo	ork and image &					
	video processing toolbox of MATLAB.									
	CO-PEO Mapping Matrix for Course MTech/CSE/PT/3/CC7									
COs	PEO1	PEO2	PEO3	PEO4	PEO5					
CO1	1	1	3	3	3					
CO2	2	2	3	3	3					
CO3	3	3	3	3	3					
CO4	3	3	3	3	3					
CO5	3	3	3	3	3					
CO6	3	3	3	3	3					
Average	2.5	2.5	3	3	3					

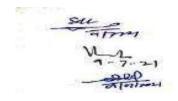


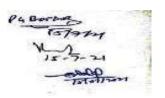
CO1 CO2 CO3 CO4 CO5 CO6 Average CO3 CO1 CO2 CO3 CO4 CO5 CO6 Average Unit I M. too dir cor and Ve		PSO1 3 3 3 3 3 3 3 3	PO3 1 1 1 1 1 3 1.33 apping I	PO4			SO3 1 2 3 3 3	PO8 SE/PT/	PO9 S/CC7 PSO4	PO10	PO11 1 2 3 3 3 2.5 PSC 3 3 3 3 3 3 3 3 3	PO12 3 3 3 3 3 3 3 5 5 5					
CO2 CO3 CO4 CO5 CO6 Average CO COS CO1 CO2 CO3 CO4 CO5 CO6 Average Unit I M. too dir cor and Ve	2 3 3 3 3 2.5 CO-P	1 1 3 1 3 2 PSO Ma PSO1 3 3 3 3 3 3	1 1 1 1 3 1.33	3 3 3 2.67 Matrix 1 PSO2 3 3 3 3 3	3 1 3 3 2 2 For Cou		SO3 1 2 3 3 3	- - -		-	2 3 3 3 3 2.5 PSC 3 3 3 3 3	3 3 3 3 3					
CO3 CO4 CO5 CO6 Average CO COS CO1 CO2 CO3 CO4 CO5 CO6 Average Unit I Matorial or contained to contain the contained to	3 3 3 2.5 CO-P	1 3 1 3 2 PSO Ma PSO1 3 3 3 3 3 3	1 1 1 3 1.33	3 3 3 2.67 Matrix 1 PSO2 3 3 3 3 3	3 1 3 3 2 2 For Cou		SO3 1 2 3 3 3	- - -		-	3 3 3 2.5 PSC 3 3 3	3 3 3 3 3					
CO4 CO5 CO6 Average CO8 CO1 CO2 CO3 CO4 CO5 CO6 Average Unit I Matoric directors and vectors and vectors are material and vectors and vectors and vectors and vectors and vectors and vectors are material and vectors and vectors and vectors and vectors are material and vectors and vectors are material and vectors and vectors are vectors and vectors and vectors are vectors and vectors and vectors are vectors and vectors are vectors and vectors are vectors and vectors are vectors and vectors are vectors and vectors are vectors and vectors are vectors and vectors are vectors and vectors are vectors are vectors and vectors are vectors and vectors are vectors and vectors are vectors and vectors are vectors and vectors are vectors and vectors are vectors and vectors are vectors and vectors are vectors and vectors are vectors and vectors are vectors and vectors are vectors are vectors and vectors are vectors are vectors are vectors are vectors are vectors are vectors are vectors are vectors are vectors are vectors are vectors and vectors are vectors are vectors are vectors are vectors and vectors are vectors ar	3 3 2.5 CO-P	3 1 3 2 PSO Ma PSO1 3 3 3 3 3 3	1 1 3 1.33	3 3 2.67 Matrix f PSO2 3 3 3 3 3	1 3 3 2 for Cou		SO3 1 2 3 3 3	- - -		-	3 3 2.5 PSC 3 3 3	3 3 3					
CO5	3 2.5 CO-P	1 3 2 PSO Ma PSO1 3 3 3 3 3 3 3 3 3 3	1 3 1.33	3 2.67 Matrix 1 PSO2 3 3 3 3 3	3 3 2 2 for Cou		SO3 1 2 3 3 3	- - - - SE/PT/		-	3 3 2.5 PSC 3 3 3	3 3 3					
CO6	3 2.5 CO-P	3 2 PSO Ma PSO1 3 3 3 3 3 3 3	3 1.33	3 2.67 Matrix 1 PSO2 3 3 3 3 3	3 2 2 for Cou		SO3 1 2 3 3 3	- - - SE/PT/		-	PSC 3 3 3 3	3					
Average COS CO1 CO2 CO3 CO4 CO5 CO6 Average Unit I Mattor dir cor and Ve	2.5 CO-P	2 PSO Ma PSO1 3 3 3 3 3 3	1.33	2.67 Matrix 1 PSO2 3 3 3 3 3 3	2 for Cou		SO3 1 2 3 3 3	- - SE/PT/		-	PSC 3 3 3 3	3					
COs CO1 CO2 CO3 CO4 CO5 CO6 Average Unit I Matoc directors and Venue	CO-P	PSO Ma PSO1 3 3 3 3 3 3 3		PSO2 3 3 3 3 3 3 3	for Cou		SO3 1 2 3 3 3	- SE/PT/			PSC 3 3 3 3	-					
COs CO1 CO2 CO3 CO4 CO5 CO6 Average Unit I Modification		PSO1 3 3 3 3 3 3 3 3	apping I	PSO2 3 3 3 3 3 3			SO3 1 2 3 3 3	SE/PT/			3 3 3	05					
CO1 CO2 CO3 CO4 CO5 CO6 Average Unit I Modification	P	3 3 3 3 3 3		3 3 3 3 3		P	1 2 3 3 3		PSO4 - - -		3 3 3	05					
CO2 CO3 CO4 CO5 CO6 Average Unit I Modification too dir cor and Ve		3 3 3 3 3		3 3 3 3			2 3 3 3		- - -		3						
CO3 CO4 CO5 CO6 Average Unit I Modification correction with the correction correction with the correction correction with the correction corre		3 3 3 3		3 3 3 3			3 3 3		- - -		3						
CO4 CO5 CO6 Average Unit I Modification too dir cor and Ve		3 3 3 3		3 3 3			3		-								
CO5 CO6 Average Unit I Mator director and Verman and		3 3 3		3			3		-		2						
CO6 Average Unit I too dir cor and Ve		3		3						3 3 - 3							
Unit I M. too dir cor and Ve ma		3					3										
Unit I MA too dir cor an Ve				3		3 3 - 3											
too dir cor and Ve ma							2.5		-		3						
too dir cor and Ve ma	Course Content MTech/CSE/PT/3/CC7: MATLAB Programming																
	Unit I MATLAB: Introduction, history, origin, growth and development, features, menus and the toolbar, computing, types of file, editor debugger, useful commands, help system, creating directory and saving files, constants variables and expressions-character set, data type, constants, variables and expressions, operators, hierarchy of operations, built-in-function, and assignment statements. Vectors and matrices: scalars and vectors, entering data in matrices, line continuation, matrices subscripts, multi-dimensional matrices and arrays, matrix manipulation, special matrices, commands related to matrices, structure arrays, cell arrays.																
Inp cor Int file au an cre	Unit - II Polynomials: entering, evaluation, roots, operations. Input/output statements: data input, interactive inputs, reading/storing data files, output commands, low level input output functions. Introduction to data import and export, supported file format, working with audio/video file, importing audio/video data, reading audio/video data from a file, exporting audio/video data, example, working with spreadsheets, writing to an xls file, reading from an xls files, working with graphics file, importing graphics data, exporting graphics data, creating a simple GUI programmatically, dissertations of different components in guide, creating menus.																

	legends, subplots, specialized 2d plot- logarithmic, polar, area, bar, barh, hist, rose, pie, stairs, stem, compass. 3d plot - plot3, bar3, bar3h, pie3, stem 3, meshgrid, mesh, surf, contour, contour3. Control Structures: for, nested for, while, branch control structure- if, switch, break, continue, error, try-catch, debugging.
Unit - IV	Introduction to MATLAB toolboxes: Simulink, image & video processing toolbox, application level image processing techniques, mri image processing, fuzzy logic toolbox, neural network toolbox.
	Text/Reference Books
Text Books.	 Raj Kumar Bansal, Ashok Kumar Goel, Manoj Kumar, MATLAB and its Application in Engineering, Pearson Education. Ram N.Patel, Ankush Mittal, Programming in MATLAB, A Problem Solving Approach, Pearson Education. Duane Hanselman, Bruce L Littlefield, Mastering MATLAB 7, Prentice Hall. Amos Gilat, MATLAB: An Introduction with Application, Wiley Publisher.
Reference Books	 Jim Sizemore, John P.Mueller, MATLAB for Dummies, Wiley. Stephen J.Chapman, Matlab Programming for Engineers, Thomson-Engineering Publisher, CENGAGE Learning.

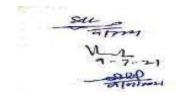


MTech/CSE/PT/3/CC8: Advanced Operating System									
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment		
	Credit	t Hours/Week	Mode	External	Internal	Duration	Methods		
Compulsory Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance		


Course Objectives: The objective of this course is to study, learn, and understand the major concepts of advanced operating systems, namely, multimedia operating systems, distributed and real time operating systems, threads, security and design issues in operating systems.

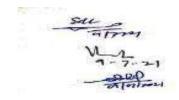

			_	•								
Course Outcomes	At the	At the end of this course, the student will able to: define: kernel, threads, concept of multimedia, distributed and real time operating										
CO1											ime op	erating
		n, issues		_	•	_						
CO2		understand and describe: kernel, threads, deadlock, virtualization, concept of multimedia, distributed and real time operating system, issues in design, security and										
						e opera	ting sy	ystem,	issues ii	n desigi	i, securi	ity and
G02	_	mance o				1. 1	. 1 1	1 1'	1		1 1'	
CO3		demonstrate/illustrate: process scheduling, disk scheduling, real time scheduling,										
COA		mutual exclusion, deadlock, security and protection mechanism in operating system.										
CO4		classify algorithm for: process scheduling and disk scheduling, mutual exclusion							iusion,			
CO5		deadlock, security and protection. compare algorithm for: process scheduling and disk scheduling, mutual exclusion,							lucion			
						iicaaiiii	g and	uisk s	ciicauiii	iig, iiiui	uai cac	iusion,
	deadlock, security and protection. CO-PEO Mapping Matrix for Course MTech/CSE/PT/3/CC8											
COs	PE	CO1	PEO2			PEO3			PEO4		PEO5	
CO1		1	1				3		3		3	
CO2		2	2				3		3		3	
CO3		3	3			3			3		3	
CO4		3		3			3		3		3	
CO5		3		3	Ï	3			3		3	
Average	2	.4		2.4		3			3		3	
	CO-	PO Maj	pping M	Iatrix f	or Cou	rse MT	ech/CS	SE/PT/	3/CC8			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	1	-	-	-	-	1	3
CO2	2	1	1	3	1	1	-	-	-	-	2	3
CO3	3	1	1	3	3	1	-	-	-	-	3	3

CO4	3 3	1 3 1	1 -	- - -	3 3				
CO5	3 1	1 1 3 3 1			3 3				
Average	2.4 1.8	1 2.6 1.8	1 -		2.4 3				
	CO-PSO Mappi	ing Matrix for Cou	rse MTech/CSE	/PT/3/CC8					
COs	PSO1 PSO2 PSO3 PSO4 PSO5								
CO1	3 2 1 - 3								
CO2	3 2 2 - 3								
CO3	3 2 3 - 3								
CO4	3 2 3 - 3								
CO5	3	2	3	-	3				
Average	3	2	2.4	-	3				
Course Content MTech/CSE/PT/3/CC8: Advanced Operating System									
Unit I	Multimedia operating systems: Introduction to multimedia; multimedia files and video compression standards; process scheduling, file system, file placement, caching and disk scheduling for multimedia.								
Unit - II	Distributed operating systems: Multiprocessor hardware and scheduling; multicomputer hardware and scheduling; distributed computing architecture; distributed system models; distributed shared memory and distributed file system; mutual exclusion and deadlocks in distributed systems; network operating system vs. distributed operating system.								
Unit - III	Real-time operating systems: Characteristics and classification of real-time systems; scheduling in real-time operating systems; trends in kernel design, exo-kernel and micro-kernel; virtualization; threads – concept, advantages, implementation.								
Unit - IV	Unit - IV Design issues in operating systems: Goals and nature of design problem; guiding principles and paradigms of interface design; issues in implementation of operating system; performance of operating system; security – cryptography, user authentication, inside and outside attacks, protection mechanism.								
	Text/Reference Books								
 Text Books. 1. Andrew S. Tanenbaum, Modern Operating Systems, 2e, Pearson – Prentice Hall. 2. Pramod Chandra P. Bhatt, An Introduction to Operating Systems – Concepts and Practice, 3e, Prentice Hall, India. 3. Charles Crowley, Operating Systems – A Design Oriented Approach, Tata McGraw Hill. 									
Reference Books	2. Stallings William 3. Godbole A.S., C	perating Systems, Perating System, Operating Systems, Coperating Systems, Operating System-	n, PHI Learning. Fata McGraw-Hill		Learning.				

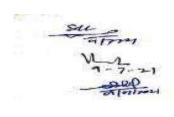


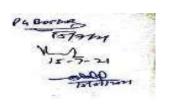
VI 1 - 7 - 21

	M.Tech/CSE/PT/3/DSC3(i): IoT and Cloud Computing											
Course Type	Course	Exam	Assessment									
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/					
							Attendance					

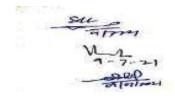

Course Objectives: To study the fundamental concepts of cloud computing, its enabling technologies, cloud service modes and security concerns, to learn core issues of Internet of Things, IoT communication protocols and security concerns.

,													
Course Outcomes	By the end of	this course, the studen	t will be able to:										
CO1		oT: framework, are	,	n, communicat	ion challenges,								
		pplications, principles of web connectivity.											
		st/define cloud computing: evolution, characteristics, working, service models,											
		rtualization, architecture, security challenges and risks. derstand and describe IoT: framework, architecture, design, communication											
CO2					communication								
		pplications, principles of											
		nd describe cloud com			working, service								
		alization, architecture,											
CO3	use cloud con	nputing services in diff	erent fields of appl	ications.									
CO4	diagrammatis	liagrammatise IOT: framework, architecture, physical and logical design.											
	diagrammatis	liagrammatise cloud computing: service models, service-oriented architecture.											
CO5	grade/compar	grade/compare IoT: communication challenges, security issues, enabling technologies,											
	-	application areas, and protocols.											
	grade/compar	grade/compare cloud computing: service models. virtualization, and hypervisors.											
	CO-PEO Map	ping Matrix for Cour	se M.Tech/CSE/P	T/3/DSC3(i)									
Cos	PEO1	PEO2	PEO3	PEO4	PEO5								
CO1	1	1	3	3	3								
CO2	2	2	3	3	3								
CO3	3	3	3	3	3								
CO4	3	3	3	3	3								
CO 5	3 3 3 3												
Average	2.4	2.4	3	3	3								
	CO-PO Mapp	ing Matrix for Cours	e M.Tech/CSE/PT	7/3/DSC3(i)									
Cos	PO1 PO2	PO3 PO4 PO5	PO6 PO7 PO	08 PO9 PO1	0 PO11 PO12								

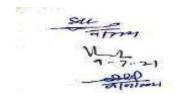


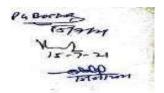

CO.1	1	3	1	1	1	_	_	_	- - -		1	3		
CO.2	2	1	1	3	1	-	- - -		-	-	2	3		
CO.3	3	1	1	3	3	-	-	-	-	-	3	3		
CO.4	3	3	1	3	1	-	-	-	-	-	3	3		
CO.5	3	1	1	3	3	_	-	-	_	_	3	3		
Average	2.4	1.8	1	2.6	1.8	-	-	-	_	_	2.4	3		
	CO-PSO Mapping Matrix for Course M.Tech/CSE/PT/3/DSC3(i)													
Cos	P	PSO1 PSO2 PSO3 PSO4 PSO5												
CO1		3		2			1		-		3			
CO2		3		2			2		-		3			
CO3		3		2			3		-		3			
CO4		3		2			3		-		3			
CO5		3		2			3		-		3			
Average		3		2			2.4		-		3			
	M	Tech/C	SE/PT/	/3/DSC3	3(i): IoT	and C	loud (Comput	ing					
Unit - II	Communication, Layered Architecture (3 & 5 Layered) of IoT, Physical Design and Logical Design, Domain-specific IoTs, Security Issues of IoT. Unit - II Communication challenges related to IoT, Enabling technologies for IoT. Applications of IoT: Home Automation, Smart Cities, Social Life and Entertainment, Health & Fitness, Smart Environment and Agriculture, Supply Chain and Logistics, Energy conservation. Design principles for web connectivity: Web Communication protocols for Connected Devices, Message Communication Protocols for Connected Devices.													
Unit - III	Introduction to Cloud Computing: What is a cloud, definition of cloud computing, Evolution of cloud computing, characteristics of cloud computing, How Cloud Computing Works, Role of networks in Cloud computing. Service Models: IaaS, PaaS, SaaS, Public, private and hybrid cloud.													
Unit - IV	Introduction to virtualization, Resource Virtualization-Server, Storage, Network, Load Balancing and Virtualization. Hypervisors and its types, Service Oriented Architecture (SOA), Overview of Security Issues, Challenges and Risks of Cloud.													
	Text/Reference Books													
Text Books	 Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing a Practical Approach, Tata McGraw Hill, New Delhi, 2010 Robert Elsenpeter, Toby J. Velte, Anthony T. Velte, Cloud Computing: A Practical Approach, 1e, Tata McGraw Hill Education, 2011. Judith Hurwitz, Robin Bloor, Marcia Kaufman, Fern Halper, Cloud Computing for 													

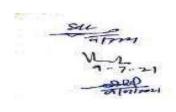
	Dummies, Wiley Publishing, 2010
Reference Books	 RajkumarBuyya, James Broberg, AndrzejGoscinski, Cloud Computing- Principles and Paradigms, Wiley, 2011. Raj Kamal, Internet of Things-Architectures and Design Principles, McGraw Hill Education, 2017



		MTech/CSE	//PT/3/DSC3(ii): Grid Co	omputing		
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods
Optional Theory	04	04	Lecture 70 30		30	3 Hours	TEE/MTE/ Assignment/
,					20 5 5		Attendance

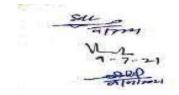

Course Objectives The objective of this course is to study, learn, and understand the concepts of grid computing.

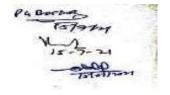

Course Outcomes	By the end of	this course, the studen	t will be able to:								
CO1	governance, (define:cluster computing ,grid computing, meta computing, SOAP, WSDL, e-governance, OGSA, WSRF, GT4,cluster middleware, protocols for clusters, HiPPI, process scheduling.									
CO2	WSDL, e-gov	understand and describe: cluster computing ,grid computing, meta computing, SOAP, WSDL, e-governance, OGSA, WSRF, GT4,cluster middleware, protocols for clusters, HiPPI, process scheduling									
CO3	Illustrate/demonstrate: concepts of networking, protocols, load balancing and sharing, web services, globustoolkit, setting up and administration ofcluster.										
CO4	diagrammatize the architecture of: grid Computing ,service oriented architecture,GT4, OGSA-DAI, cluster categorize: clusters, protocols for clusters, networking and switching devices,schedulingpolicies,strategies for load balancing										
CO5	compare and load balancing	evaluate : clusters, pro	otocols for clusters	s,schedulingpolic	ies,strategies for						
	CO-PEO Mapp	oing Matrix for Cours	se M.Tech/CSE/P	Γ/3/DSC3(ii)							
Cos	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	1	3	3	3						
CO2	2	2	3	3	3						
CO3	3	3 3 3 3									
CO4	3 3 3 3										
CO 5	3	3 3 3 3									
Average	2.4 2.4 3 3 3										
	CO-PO Mapping Matrix for Course M.Tech/CSE/PT/3/DSC3(ii)										



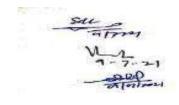
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO.1	1	3	1	1	1	_	-	-	-	-	1	3	
CO.2	2	1	1	3	1	-	-	-	-	-	2	3	
CO.3	3	1	1	3	3	-	-	-	_	-	3	3	
CO.4	3	3	1	3	1	-	-	-	_	-	3	3	
CO.5	3	1	1	3	3	-	-	_	_	-	3	3	
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3	
	CO-PSO Mapping Matrix for Course M.Tech/CSE/PT/3/DSC3(ii)												
COs	COs PSO1 PSO2 PSO3 PSO4 PSO5												
CO1		3		2			1		-		3		
CO2		3		2			2		-		3		
CO3		3		2			3		-		3		
CO4		3		2			3		-		3		
CO5		3		2			3		-		3		
Average		3		2			2.4		-		3		
Unit - II Unit - II	Computing, e-Governance and the Grid Technologies and Architectures for Grid Computing: Issues in Data Grids, Functional requirements in Grid Computing, Standards for Grid Computing, Recent technologies trends in Large Data Grids. Web Services and the Service Oriented Architecture: Service Oriented Architecture, SOAP and WSDL, Creating Web Services, Server Side.												
Unit - III	Cluster Computing: Approaches to Parallel Computing, Definition and Architecture of a Cluster, Categories of clusters. Cluster Middleware: Levels and Layers of Single System Image, Design objectives, Resource Management and Scheduling, Cluster programming Environment and Tools. Networking, Protocols and I/O for clusters: Networking and Interconnection/Switching Devices, Design Issues, Design Architecture, HiPPI, ATM, Myrinet, Memory Channel Setting Up and Administering a Cluster: Setup of simple cluster, setting up nodes,												
Unit - IV	_	_		stem mo	_		_		_	ister, st	ang up	noues,	

	Cluster Technology for High Availability: High availability clusters, high availability parallel computing, types of failures and errors, cluster architectures and configurations for high availability, Failure/Recovery clusters. Process Scheduling: Job management System, Resource management system, policies of resource utilization, Scheduling policies. Load Sharing and Load Balancing: Introduction, Strategies for load balancing, Modelling parameters
	Text/Reference Books
Text Books	 Grid and Cluster Computing by C.S.R. Prabhu, PHI The Grid: Blueprint for a New Computing Infrastructure, Ian Foster, Carl Kesselman, Elsevier Series, 2004. Grid Computing for Developers, Vladimir Silva, Charles River Media, January 2006.
Reference Books	 Global Grids and Software Toolkits: A Study of Four Grid Middleware Technologies, High Performance Computing: Paradigm and Infrastructure, Laurence Yang and MinyiGuo (editors), Wiley Press, New Jersey, USA, June 2005. Grid Resource Management: State of the Art and Future Trends, JarekNabrzyski, Jennifer M. Schopf, Jan Weglarz, International Series in Operations Research & Management Science, Springer; 1e, 2003.



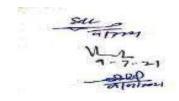


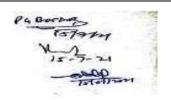
	M.Tech/CSE/PT/3/DSC3(iii): Quantum Computing										
Course Type	Course	Contact									Assessment
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods				
Optional Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance				


Course Objectives: The objective of this course to understand the basic concept of quantum computing it's relation to mathematics and physics, quantum circuits, quantum information and cryptography, quantum algorithms.

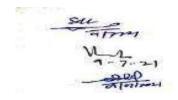
Course Outcomes	By the	By the end of this course, the student will be able to:										
CO1	define	lefine quantum computation:mechanics, circuit, multiple ,teleportation, cryptography										
	and pro	nd programming languages										
CO2				•		•			es, circuit		•	
	telepor	tation,	quantun	n algorit	thms cr	yptogra	phy and	d prog	gramming	g langu	iages.	
	interpr	interpret: error correction and computation of fault-tolerant.										
CO3	determ	ine the	relation	ship of	quantui	n with:	mather	natics	,			
	physics				_							
									complex			
CO4	-	nalyze: quantum programming languages, quantum computations,error correction,										
		ault-tolerant computation.										
CO5		compare: quantum algorithms, classical and quantum information theory, classical gates										
		and quantum gates. evaluate: classical computation on quantum computers.										
				_					Magazia Magazia	•••		
	1		ing Ma		Cours			JP1/3	3/DSC3(i	1		
Cos	PEC	01		PEO2		P	EO3		PEO4	ļ	PEO5	5
CO1	1			1			3		3		3	
CO2	2			2			3		3		3	
CO3	3	}		3			3		3		3	
CO4	3	3 3 3 3 3										
CO5	3 3 3 3											
Average	2.	2.4 2.4 3 3 3										
	СО-РО	Mappi	ng Mat	rix for	Course	M.Tecl	h/CSE	/PT/3	/DSC3(ii	i)		
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO11	PO12

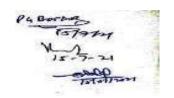
CO.1	1	3	1	1	1	_	_	-	_	_	1	3
CO.2	2	1	1	3	1	-	_	-	-	-	2	3
CO.3	3	1	1	3	3	-	_	-	_	-	3	3
CO.4	3	3	1	3	1	-	_	-	_	_	3	3
CO.5	3	1	1	3	3	-	_	-	_	-	3	3
Average	2.4	1.8	1	2.6	1.8	-	_	-	_	-	2.4	3
	CO-PSC) Mapp	ing Ma	trix for	Course	e M.Teo	h/CSI	E /PT/3 /	DSC3(i	ii)		
COs	P	PSO1		PSO2	2	P	SO3		PSO4	1	PSC)5
CO1		3		2			1		-		3	
CO2		3		2			2		-		3	
CO3		3		2			3		-		3	
CO4		3		2			3		-		3	
CO5		3		2			3		-		3	
Average		3		2			2.4		-		3	
Unit - II Unit - II Unit - III	Quantum bits and quantum operations, Postulates of quantum mechanics, Bloch sphere representation of a qubit, multiple qubits, classical gates versus quantum gates. Unit - II Background Mathematics and Physics: Hilber space, Probabilities and measurements, entanglement, density operators and correlation, basics of quantum mechanics, Measurements in bases other than computational basis. Quantum Circuits: single qubit gates, multiple qubit gates, design of quantum circuits.											
Unit - IV	Quantum Algorithms: Classical computation on quantum computers. Relationship between quantum and classical complexity classes. Deutsch's algorithm, Deutsch's-Jozsa algorithm, Shor factorization, Grover search. Noise and error correction: Graph states and codes, Quantum error correction, fault-tolerant computation. Text/Reference Books											
Text Books				Quantu								
	Pub 3. Qua Chi	olication antum c uang, Ca roductio	a 2008 computa ambridg	ation an ge Unive	d quant ersity Pr	tum info	ormati 0	on, Mic	chael A	. Niels	& Son	Isaac L.


Reference Books	1.	Quantum computing for computer scientists, Noson S. Yanofsky, Mirco A. Mannucci,
		Cambridge University Press 2008
	2.	Principles of Quantum Computation and Information, Vol. I: Basic Concepts, Vol II:
		Basic Tools and Special Topics, Benenti G., Casati G. and Strini G., World Scientific,
		2004.

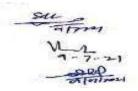

MTech/CSE/	MTech/CSE/PT/3/CC9: Software Lab based on MTech/CSE/PT/3/CC7 (MATLAB Programming)									
Course Type	Course			Maxim	um Marks	Exam	Assessment			
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods			
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File			

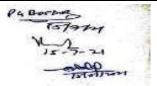
Instructions to paper setter for Final Term Examination: The Final Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.


Course Objectives: The objective of this course is to get the students hands on practice with programming constructs of MATLAB and their usage. This course is based on MTech/CSE/PT/3/CC7 MATLAB Programming.


Course Outcomes	At the end of	At the end of this course, the student will be able to:								
CO1	define: feature	define: features, commands, data types, hierarchy of operations, matrix, tools, functions								
	related to inpu	related to input/output, file handling and graphics, control structure and toolboxes used								
	in MATLAB.									
CO2	describe: hist	ory, origin, features,	commands, data	types, hierarch	y of operations,					
	matrix, tools,	functions related to fil	e, function related	to graphics, con	trol structure and					
	various toolbo	exes of MATLAB.								
CO3		ls, operations, tools, m		•	0					
		ated to graphics, 2D			ture, debugging,					
	simulink and	simulink and image & video processing toolboxes in MATLAB.								
CO4		analyze: commands, data types, operations, control structure, matrix, tools, different								
		ed to graphics and file								
CO5		mmand, data type, to			gging technique,					
		re or toolbox of MAT								
CO6		or advanced program i	U		•					
		tions, tools, features, s	• •	gic, neural netwo	ork and image &					
	video processing toolbox of MATLAB.									
	CO-PEO Mapping Matrix for Course MTech/CSE/PT/3/CC9									
Cos	PEO1	PEO1 PEO2 PEO3 PEO4 PEO5								
CO1	1	1	3	3	3					

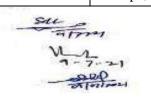
CO2		2		2			3		3		3	
CO3		3		3			3				3	
CO4		3		3			3		3		3	
CO5		3		3			3		3		3	
CO6		3		3			3		3		3	
Average	2	.5		2.5			3		3		3	
	CO-	PO Maj	ping N	Iatrix f	or Cou	rse MT	ech/CS	SE/PT	T/3/CC9	,		
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	-	-	-	1	3
CO2	2	1	1	3	1	-	-	-	-	-	2	3
CO3	3	1	1	3	3	-	-	_	_	-	3	3
CO4	3	3	1	3	1	-	-	-	-	-	3	3
CO5	3	1	1	3	3	-	-	-	-	-	3	3
CO6	3	3	3	3	3	-	-	-	-	-	3	3
Average	2.5	2	1.33	2.67	2			-	-	-	2.5	3
	CO-F	PSO Ma	pping I	Matrix f	for Cou	ırse MT	ech/C	SE/P	T/3/CC9			
Cos	F	PSO1		PSO2	2	P	SO3		PSO4	l l	PSC)5
CO1		3		3			1		-		3	
CO2		3		3			2		-		3	
CO3		3		3			3		-		3	
CO4		3	<u> </u>	3			3		-		3	
CO5		3		3		3			-		3	
CO6		3		3			3		-		3	
Average		3		3			2.5		-		3	

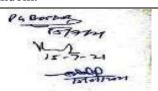




]	MTech/CS	SE/PT/4/CC	10: Python	Program	ming		
Course Type	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment
	Credit	Hours/Wee k	Mode	Externa 1	Internal	Duration	Methods
Compulsory Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance

Course Objectives: The objectives of this course is to get the students familiar with basic concepts of Python programming, decision making and functions, file handling and object oriented programming concepts, database programming and to implement machine learning concepts.


Course Outcomes	At the end of this course, the student will be able to:													
CO1		define: installations, working, structures, control statements, operators, lists, object oriented programming concepts, python libraries.												
CO2	•				trol sta thon pro				gs, OO	Ps ,file	e handli	ng cond	cepts,	
CO3					such as									
CO4	_	rize: d librari		es, dic	tionarie	s, co	ond	itional	& co	ntrol s	tatement	s, func	tions,	
CO5	compa librarie		types,	diction	aries, co	ondit	ion	al & co	ontrol s	tatemei	nts, func	ions, p	ython	
CO6	design	: basic	and adv	anced a	applicati	ions	in p	ython.						
	CO-P	CO-PEO Mapping Matrix for Course MTech/CSE/PT/4/CC10												
COs		PEO1			PEO2			PEO	3	Pl	EO4		PEO5	
CO1		1			1			3			3	3		
CO2		2			2			3			3		3	
CO3		3			3			3			3		3	
CO4		3			3			3			3		3	
CO5		3			3			3			3		3	
CO6		3			3			3			3		3	
Average	2.5 2.5 3 3 3													
	CO-PO Mapping Matrix for Course MTech/CSE/PT/4/CC10													
COs	PO1	PO2	PO3	PO4	PO4 PO5 P			PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-		-	-	-	-	1	3	

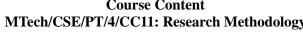


CO2	2	1	1	3	1	-	-	-	-	-	2	3
CO3	3	1	1	3	3	-	-	-	-	-	3	3
CO4	3	3	1	3	1	-	-	-	-	-	3	3
CO5	3	1	1	3	3	-	-	-	-	-	3	3
CO6	3	3	3	3	3	-	-	-	-	-	3	3
Average	2.5	2	1.3	2.6	2	-	-	-	-	-	2.5	3
	CO-F	SO M	apping	Matri	x for Co	urse]	MTech/(CSE/PT	7/4/CC	10	ı	
COs		PSO1			PSO2			PSO3		PSO4		PSO5
CO1		3			3		-	1		-		3
CO2		3			3			2		-		3
CO3		3			3			3		-		3
CO4		3			3			3		-		3
CO5		3			3		3		-			3
CO6		3			3		3		-			3
Average		3			3		2.5			-		3
	N	//Tech/	CSE/P		se Cont		Program	ming	ı		1	
Unit – I		MTech/CSE/PT/4/CC10: Python Programming Installation and Working with Python, Using Help, Structure of a structure of the st										

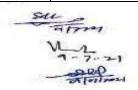
	Course Content MTech/CSE/PT/4/CC10: Python Programming
Unit – I	Installation and Working with Python, Using Help, Structure of a Python Program, Control flow, Interpreter shell, Tokens, Identifiers, Reserved keywords, Literals, Variables, Python basic Operators, Declaring and using Numeric data types: int, float, complex, using string data type. Python Casting, Scope of a Variable, Working with: String, List, Tuples and Dictionaries.
Unit – II	Conditional blocks using if, else and elif, For loops in python, While loops, Continue, Break and Else, organizing python codes using functions, Modules: Creating Module, using Modules and Built-in Modules. Packages: Package Types, Importing Package, Viewing Package Content and Documentation. Powerful Lambda Function in python, Programming: Using Functions, Modules and Packages.
Unit – III	Object Oriented Programming: Concept of Class, Object and Instances, Constructor, Class Attributes and Destructors, Built-in Class Attributes, Inheritance, Method Overriding, Data Encapsulation, Overloading Operators, Data Hiding, Exception Handling, Programming using Oops concepts. File Handling: Creating, Opening, Closing, Writing & Reading File Content, Deleting a File. Programming using file operations.
Unit – IV	Python NumPy: Array Slicing, Array Indexing, Data Types, Array Shape & Reshape, Array Join, Array Split, Random.

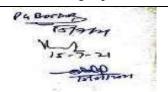
Python Pandas: Data Frames, Read CSV, Analyzing Data and Cleanin Python Matplotlib: Line, Grid, Scatter, Bars, Histograms and Pie Cha							
	Text/Reference Books						
Text Books	 Chun, J Wesley, Core Python Programming, 2e, Pearson, 2007. E. Balagurusamy, Introduction to Computing and Problem Solving Using Python, McGraw Hill Education, 2016. 						
Reference Books	 Barry and Paul, Head First Python, 2e, O Reilly, 2010. Lutz and Mark, Learning Python, 4e, O Reilly, 2009 						

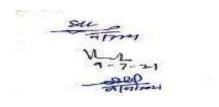
		MTech/CSI	E/PT/4/CC11:1	Research Me	thodo	logy			
Course	Course	Contact	Delivery	Maxim	ım Ma	ırks		Exam	Assessment
Type	Credit	Hours/ Week	Mode	External	Int	erna	.1	Duration	Methods
Optional Theory	04	04	Lecture	70		30		3 Hours	TEE/MTE/ Assignment/
					20	5	5		Attendance


Course Objectives: The objective of this course is to get the students familiar with different aspects of research methodology, namely, research design, collection and analysis of data, and interpretation of results.

Course Outcomes	At the end of this course, the student will be able to:
CO1	define: objectives, hypothesis, interpretation, data analysis, data collection,
	research design and method, interpretation, data analysis, sampling.
CO2	describe: objectives, hypothesis, interpretation, data analysis, data collection,
	research design and method, interpretation, data analysis, sampling.
CO3	Illustrate: measurement. data collection, processing, sampling, analysis and its strategies, reports.
CO4	categorize: research, sampling methods, data collection techniques, reports and data processing strategies. perform: data analysis.
CO5	compare: sampling methods, data collection techniques, reports and data processing strategies.
CO6	create: thesis, reports. design: research tool . interpret(drive): results.

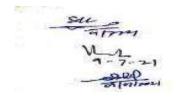


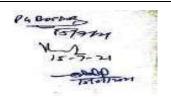

	CO-PE) Maj	pping N	Iatrix	for Co	ourse N	Tech/(CSE	/PT/	4/CC1	1		
Cos	PE	O1		PEO	2		PEO3			PEO4	ļ.	PE	O5
CO1		1		1			3			3		3	
CO2		2		2			3			3		3	3
CO3		3		3			3			3		3	3
CO4		3		3			3			3		3	3
CO5		3		3			3			3		3	3
CO6		3		3			3			3		3	3
Average	2	.5		2.5			3			3		3	3
	CO-PO	Мар	ping M	atrix f	for Co	urse M	Tech/C	SE/	PT/4	/CC11	-		
Cos													
	P01	P02	P03	P04	PO5	P06	PO7	P08		P09	PO10	PO11	PO12
	Ь	Ь	Д	Д.	Ь	Ь	Д	Ь		Ь	P(P	P
CO1	1	3	1	1	1	-	 		3	-	3	1	3
CO2	2	1	1	3	1	-	-		3	-	3	2	3
CO3	3	1	1	3	3	-	-		3	_	3	3	3
CO4	3	3	1	3	1	-	-		3	-	3	3	3
CO5	3	1	1	3	3	-	-		3	-	3	3	3
CO6	3	3	3	3	3	-	-		3	-	3	3	3
Average	2.5	2	1.3	2.6	2	-	_		3	-	3	2.5	3
	CO-PSO) Mar	pping M	Iatrix	for Co	ourse N	ITech/(CSE	/PT/	4/CC1	1		
Cos	PS	01	F	SO2		P	SO3			PSO4	ļ.	PS	O5
CO1	3	3		3			1			3		3	3
CO2	3	3		3			2			3		3	3
CO3	3	3 3 3								3	3		
CO4	3	3 3 3								3	3		
CO5	3	3		3			3			3		3	3
CO6	3	3 3 3 3									3		
Average	Average 3 3 2.5 3 3												
Course Content MTech/CSE/PT/4/CC11: Research Methodology													


Unit-I

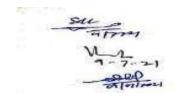
Objectives and types of research: motivation and objectives- research methods vs. methodology, types of research- descriptive vs. analytical, applied vs. fundamental, quantitative vs. qualitative, conceptual vs, empirical research formulation: defining and formulating the research problem-. selecting the problem, necessity of defining the problem, importance of literature review in defining a problem, literature review-

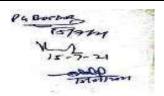
	primary and secondary source reviews, hypothesis- definition, qualities of a good hypothesis, null hypothesis and alternatives.
Unit – II	Research design and methods: basic principles, need of research design- features of good design, important concepts relating to research design, criteria of selecting a sampling procedure, characteristics of a good sample design, sampling methods, measurement: concept of measurement, problems in measurement in research - validity and reliability. levels of measurement- nominal, ordinal, interval, ratio.
Unit – III	Data collection and analysis: execution of the research, observation and collection of data, methods of data collection, data processing and analysis strategies, data analysis with statistical packages, hypothesis testing, generalization and interpretation, univariate analysis (frequency tables, bar charts, pie charts, percentages).
Unit – IV	Meaning of interpretation, need of interpretation, technique of interpretation, precaution in interpretation, layout of a research paper, journals in computer science, impact factor of journals, ethical issues related to publishing, plagiarism and self-plagiarism. reports and thesis writing: structure and components of scientific reports, types of report- technical reports and thesis, writing-synopsis, abstract, illustrations and tables, results, summary, reference citing and listing.
	Text/Reference Books
Text Books	 J. Garg, B.L, Karadia, R, Aggarwal F, An Introduction to Research Methodology, RBSA Publishers, 2002. Kothari, C.R, Research Methodology: Methods and Techniques. New Age International, 1990 Santosh Gupta, Research Methodology and Statistical Techniques, Deep & Deep Publications Pvt. Ltd., 2008
Reference Books	 N. Gurumani, Scientific Thesis Writing and Paper Presentation, MJP Publishers. Montgomery, Douglas C, Design and Analysis of Experiments, Wiley India Pvt. Ltd.



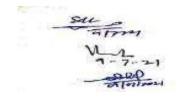

	MTech/CSE/PT/4/DSC4(i): Data Warehousing and Data Mining							
Course Type	Course	Contact	- · · · · · · · · · · · · · · · · · · ·		um Marks	Exam	Assessment	
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods	
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance	

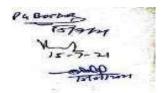
Course Objectives: The objective of this course is to get the students familiar with different concepts of data warehouse and data mining, namely, OLAP, Association rule mining, classification and prediction.


Course Outcomes	At the end of this course, the student able to:
CO1	define: the concepts of data mining, data pre-processing, outliers, data warehouse,
	OLAP, association rule mining, data classification prediction and cluster Analysis.
CO2	describe: key process of data mining ,data warehousing, OLAP, data warehousing to
	data mining, association rule, classification and prediction methods.
CO3	apply: OLAP technology and association rules.
	use: decision induction, bayesion and back propagation classification methods.
CO4	differentiate: operational database systems and data warehousing, single dimensional and multidimensional association rules, and between various data mining classification
	methods.
CO5	evaluate: data mining and data warehouse, OLAP technology, single and multi-dimensional association rule.

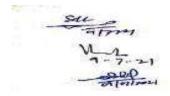

	CO-PE	O Map	ping M	atrix f	or Cou	rse M	Tech/C	SE/PT	/4/DSC	4 (i)			
COs		PEO1		PEO2			PEO3			PEO4		PEO5	
CO1		1		1			3			3		3	
CO2		2		2			3		3			3	
CO3		3		3			3		3			3	
CO4		3		3	3 3			3			3		
CO5		3		3			3		3			3	
Average		2.4		2.4			3		3			3	
	CO-P	Э Марр	ing Ma	atrix fo	r Cou	se MT	ech/CS	E/PT/	4/DSC4	l(i)			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	_	-	-	-	1	3	
CO2	2	1	1	3	1	_	_	-	-	-	2	3	
CO3	3	1	1	3	3	-	-	-	_	-	3	3	

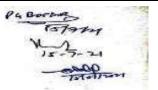
CO4	3	3	1	3	1	-	-	-	-	-	3	3	
CO5	3	1	1	3	3	-	-	-	-	-	3	3	
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3	
	CO-PS	SO Map	ping M	latrix f	or Cou	rse M	Tech/C	SE/PT	/4/DSC	4(i)			
COs		PSO1			2		PSO3		PS	SO4	PS	SO5	
CO1		3		3			1			-		3	
CO2		3		3			2			-	İ	3	
CO3		3		3			3			-		3	
CO4		3		3			3			-		3	
CO5		3		3			3			-		3	
Average		3		3			2.4			-		3	
Unit - I	Course Content MTech/CSE/PT/4/DSC4(i): Data Warehousing and Data Mining Unit - I Data Mining: Introduction: Motivation, Importance, Knowledge discovery process, data												
Unit - II	system, Major issues, Data Mining Primitives. Data Pre-processing: Data cleaning, Data Integration and transformation, Data reduction, Discretization and concept hierarchy generation. Data visualization. Outliers, Types of Outliers and challenges of Outlier Detection Data warehouse and OLAP Technology for data mining: data warehouse, difference												
Cint - 11	betwee Model	en opera	tional arehou	data ba se Arcl	ise syst nitectur	tems ar	nd data	wareh	nouse,	A Multi	dimensio	onal Data rehousing	
Unit - III	Association Rule Mining: Mining single-dimensional Boolean association rules from transactional databases, mining multilevel association rules from transaction databases, Mining multidimensional association rules from relational databases and data warehouses, From association mining to correlation analysis, constraint-based association Mining.												
Unit - IV	Data Mining-Classification and Prediction: issues regarding classification and prediction, classification by decision induction, Bayesian classification, classification by back propagation, classification based on concepts from association rule mining other classification methods. Cluster Analysis: What is Cluster Analysis, Types of Data in Cluster Analysis, Applications and Trends in Data Mining.												
	тррпс	ations at	10 1101										
	-			Text/F	Referen	ce Boo	ks						
Text Books.		e Berson Iruaans, l	_				_		ining,Tl	MH.			


	3. Addison-Wesley Longman, Data Warehousing in the Real World.
Reference Books	 Chanchal Singh, Data Mining and Warehousing, Wiley. Jiawei Han and MichelineKamber, Data Mining: Concepts and Techniques, San Francisco: Morgan Kaufmann Publishers, 2001.


MTec	ch/CSE/PT	Γ/4/DSC4	(ii) Big D	ata Analy	tics		
Course Type	Course	Contact	_	Maximu	m Marks	Exam	Assessment
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignmen/ Attendance

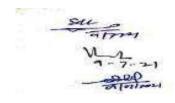
Course Objectives: The objective of this course is to get the students familiar with concepts of big data, its architecture and applications; NoSQL and HADOOP.

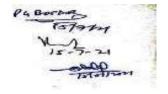

Course Outcomes	At the end of this course, the student would have understanding of:
CO1	define: Big Data and Hadoop, digital data, Apache Hadoop, analysing Data with Unix
	tools and Hadoop, Hadoop Streaming, Hadoop Echo System, IBM Big Data Strategy,
	HDFS, Hadoop Ecosystem, Pig, Hive shell and services, HBasics, Big SQL.
CO2	understand and describe: Big Data and Hadoop, Analysing Data with Hadoop,
	Hadoop Streaming, Hadoop Echo System, IBM Big Data Strategy, Hadoop
	Distributed File System, command line interface, job scheduling, shuffle and sort,
G02	task execution, Hadoop Ecosystem, Pig, HiveQL, Hbase.
CO3	apply and use: Apache Hadoop, HDFC, HBasic, Big Data and Hadoop, HDFS
	command line interface, Hadoop file system interfaces, data flow, Hive services.
CO.4	1 'C D' D . 1 H 1 D' D . 1 1 H 1 HDF0 H'
CO4	classify:Big Data and Hadoop, Big Data Analytics, Apache Hadoop, HDFS, Hive
	shell, Hive services.
CO5	Compare feature set of Dig. hadeen HDEC
COS	Compare feature set of Pig, hadoop, HDFC


CO-	PEO Mapping N	Matrix for Course M	Fech/CSE/PT/4/DS	C4 (ii)	
COs	PEO1	PEO2	PEO3	PEO4	PEO5

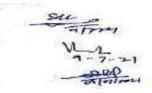

CC) 1		1		1				3		3		3	
CC)2		2		2				3		3		3	
CC)3		3		3		3		3		3			
CC)4		3		3				3		3		3	
CC)5		3		3				3		3		3	
Aver	rage		2.4		2.	4			3		3		3	
	CO	-PO	Mappin	g Matı	rix for C	Course	MTeo	ch/CSI	E/ PT/4	/DSC4	(ii)			2
СО	os 1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
СО	1	1	3	1	1	1	-	-	-	-	-	1	3	
СО	2	2	1	1	3	1	-	-	-	-	_	2	3	
СО	3	3	1	1	3	3	_	-	-	-	-	3	3	
СО	4	3	3	1	3	1	-	-	-	-	-	3	3	
СО	5	3	1	1	3	3	-	-	_	-	-	3	3	
Avera	age	2.4	1.8	1	2.6	1.8	-	_	_	-	-	2.4	3	
	CO-	PSO	Mappin	ıg Mat	rix for (Course	МТе	ch/CS	E/PT/4	4/DSC	4 (ii)			2.4
СО)s]	PSO1		PSO2 PSO3			PSO4		PSO5				
СО	1		3		3			1			-		3	
СО	2		3		3				2		-		3	
СО	3		3	Ì	3		Ì		3		-		3	
СО	4		3	j	3		Ì	3			-		3	
СО	5		3		3			3			-		3	
Avera	age		3		3			2.4			-	3		
	<u>.</u>		MTec	·h/CSI	Course			io Dat	a Anal	vtics				•
Unit I	MTech/CSE/PT/4/DSC4 (ii): Big Data Analytics Unit I Introduction to Big Data and Hadoop: Types of digital data, introduction to Big Data,Vs of Big Data, Big Data Analytics, History of Hadoop, Apache Hadoop, analysing Data with Unix tools, Analysing Data with Hadoop, Hadoop Streaming, Hadoop Echo System, IBM Big Data Strategy,Big Data applications.													
Unit - II	HDFS (Hadoop Distributed File System): The design of HDFS, HDFS concepts, command line interface, Hadoop file system interfaces, data flow, data ingest with flume and Scoop and Hadoop archives, Hadoop I/O: compression, serialization, Avro and file-based data structures.													
Unit – III	Map Reduce: Anatomy of a Map Reduce job run, failures, job scheduling, shuffle and sort, task execution, Map Reduce types and formats, Map Reduce features.													
Unit – IV	Pig: Introduction, user de Hive: Hive:	efine	d functio	ns, dat	a proces	sing op	perato	rs.					_	

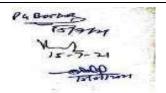
	tables, querying data and user defined functions. Hbase: HBasics, concepts, clients, example, Hbase versus RDBMS. Big SQL: Introduction							
	Text/Reference Books							
Text Books	 Tom White "Hadoop: The Definitive Guide" Third Edit on, O'reily Media, 2012. SeemaAcharya, SubhasiniChellappan, "Big Data Analytics" Wiley 2015. ArvindSathi, "BigDataAnalytics: Disruptive Technologies for Changing the Game", MC Press. 							
Reference Books	 Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007. Jay Liebowitz, "Big Data and Business Analytics" AuerbachPublications, CRC press (2013) AnandRajaraman and Jeffrey David Ulman, "Mining of Massive Datasets", Cambridge University Press, 2012. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley & Sons, 2012. 							

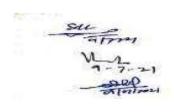



	MTech/CSE/PT/4/DSC4 (iii) Data Science							
Course Type	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment	
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods	
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance	

Course Objectives: The objective of this course is to get the students familiar with the concepts of data science, data analysis and associated visualization techniques.

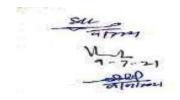

	eu visualization techniques.
Course Outcomes	At the end of this course, the student would have an understanding of:
CO1	define: data science process, classification of data, big data, web data, sampling, data analysis techniques-correlation, regression, mean, mode, kurtosis, Bayesian inference etc., neural network, fuzzy logic, rule of mining, hadoop, hive, cloud database, and visualization.
CO2	understand and describe: graphical representation of data, storage and retrieval of data, evolution of analytic scalability, sampling distribution, data analysis techniques, Bayesian model and network, induction rule, neural network, fuzzy logic, data mining techniques, data analysis framework and visualization.
CO3	use: data science process, modern data analytic tools, statistical concepts, data analysis techniques, Bayesian network, induction rule, fuzzy logic, data mining techniques, hadoop file system, hive, S3, cloud database, inference and visualization.
CO4	categorize: analytic processes and tools, analysis, reporting, sampling and resampling, data analysis techniques, linear and non-linear time series, sequential, temporal and spatial mining, egonets systems and application.
CO5	choose: data science process, data storage, data analytic tools and processes, sampling method, data analysis technique, time series, mining techniques, visual data analysis framework and technique suitable in given situation.


CO-PEO Mapping Matrix for Course MTech/CSE/PT/4/DSC4 (iii)											
Cos	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	1	3	3	3						
CO2	2	2	3	3	3						
CO3	3	3	3	3	3						
CO4	3	3	3	3	3						
CO5	3	3	3	3	3						
Average	2.4	2.4	3	3	3						
	CO-PO Map	ping Matrix for Co	ourse MTech/CSE/	PT/4/DSC4 (iii)							



COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	-	-	-	1	3
CO2	2	1	1	3	1	-	-	ı	-	ı	2	3
CO3	3	1	1	3	3	-	-	1	-	1	3	3
CO4	3	3	1	3	1	-	-	-	-	-	3	3
CO5	3	1	1	3	3	-	-	-	-	-	3	3
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3
CO-PSO Mapping Matrix for Course MTech/CSE/PT/4/DSC4 (iii)												
COs PSO1 PSO2 PSO3 PSO4 PSO5											O5	
CO1		3		3			1		-		3	
CO2		3		3			2		-		3	
CO3		3		3			3		-		3	
CO4		3		3			3		-		3	
CO5		3		3			3		-		3	
Average		3		3			2.4		-		3	ı
Unit I Unit – II	of data big dat analyti Statisti error. Data variabl regress	, graphica, chall c procescal Cor Analyses, ana	cal presented enges of sees and neepts: is: Corlysis us deling,	sentation of conve of tools, a sampling relation, sing mea	n of dat entional analysis g distri , regres an, med	a, classi system vs repo butions, ssion, p dian, m nalysis,	fications, webserting, re-sandarobability ode, s	on of da data, moderr mpling.	ata, stora evolution data an statistic Condition	nge and n of ana alytic to cal infer nal prob	retrieva alytic scools; rence, p pability, wwness,	ollection l of data, alability, rediction random kurtosis, Bayesian
regression modeling, multivariate analysis, Bayesian modeling, inference and Bayesian networks, support vector and kernel methods; Analysis of Time Series: linear systems analysis, nonlinear dynamics. Unit - III Data Mining Techniques: Rule induction: neural networks: learning and generalization, competitive learning, principal component analysis and neural networks; Fuzzy Logic: extracting fuzzy models from data, fuzzy decision trees, stochastic search methods, neuro fuzzy modelling, Association Rule Mining: clustering, outlier analysis, sequential pattern mining, temporal mining, spatial mining, web mining. Unit – IV Data Analysis Frameworks and Visualization: Map Reduce, Hadoop, Hive, sharding, NoSQL databases, cloud databases, S3, Hadoop Distributed File Systems, visualizations, visual data analysis techniques, interaction techniques, social network analysis, collective inferencing, Egonets systems and applications.												
				Text/R	eferenc	e Book	s					
Text Books.	1. Mi	chael B	erthold	, David .	J. Hand	, "Intell	igent I	Data Aı	nalysis",	Springe	er, 2007	

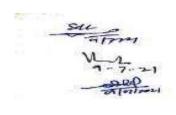
	2. AnandRajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.
Reference Books	 Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley &Sons, 2012. Jiawei Han, MichelineKamber "Data Mining Concepts and Techniques", 2e, Elsevier. Rachel Schutt, Cathy O'Neil, "Doing Data Science", O'Reilly Publishers, 2013. Foster Provost, Tom Fawcet, "Data Science for Business", O'Reilly Publishers, 2013. Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications", Wiley Publishers, 2014. S. N. Sivanandam, S. N Deepa, "Introduction to Neural Networks Using Matlab 6.0", Tata McGraw- Hill Education, 2006.



MTech/CS	MTech/CSE/PT/4/CC12: Software Lab based on MTech/CSE/PT/4/CC10 (Python Programming)												
		Contact	Delivery Mode	Maxim	um Marks	Exam	Assessment						
	Credit	Hours/Week		External	Internal	Duration	Methods						
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File						

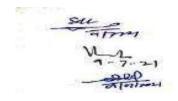
Instructions to paper setter for Final Term Examination: The Final Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

Course Objectives: The objective of this course is to perform the modeling and simulation experiments with Python. Concepts covered in MTech/CSE/PT/4/CC10 will be implemented.


Course Outcomes												
		At the end of this course, the student will be able to:										
CO1		define: installations, working, structures, control statements ,operators, lists ,object oriented programming concepts, python libraries.										
CO2	_	explain: conditional & control statements, strings, OOPs, file handling concepts, libraries and packages of python programming.										
CO3		use: various python libraries such as numpy, matplotlib, pandas . apply: python programming constructs to solve real world problems.										
CO4		rize: d librari		es, dic	tionarie	s, con	ditiona	l & co	ontrol s	tatemer	nts, fu	nctions,
CO5		compare: data types, dictionaries, conditional & control statements, functions, python libraries.										
CO6	design	: basic	and adv	anced	applicat	ions in	pythor	1.				
CO-PEO Mapping Matrix for Course MTech/CSE/PT/4/CC12												
COs		PEO 1	1		PEO2			PEO3				PEO5
CO1	Ì	1		ĺ	1		3			3		3
CO2	Ì	2		ĺ	2	ĺ	3			3		3
CO3		3			3		3			3		3
CO4		3			3		3			3		3
CO5	Ì	3		ĺ	3	ĺ		3		3		3
CO6	Ì	3		ĺ	3	j		3		3		3
Average		2.5			2.5			3		3		3
	CO-PC	Марр	oing Ma	itrix fo	r Cours	se MTe	ch/CS	E/PT/4	/CC12		·	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	-	-	-	1	3
CO2	2	1	1	3	1	-	-	-	-	-	2	3
CO3	3	1	1	3	3	-	-	-	_	-	3	3

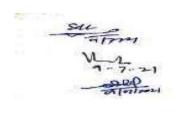
.

CO4	3	3	1	3	1	-	-	-	-	-	3	3
CO5	3	1	1	3	3	-	-	-	-	-	3	3
CO6	3	3	3	3	3	-	-	-	-	-	3	3
Average	2.5	2	1.3	2.6	2	-	-	 -	-	_	2.5	3
CO-PSO Mapping Matrix for Course MTech/CSE/PT/4/CC12												
COs	PSO1			PSO2		PSO3			PSO4		PSO5	
CO1		3			3		1			-		3
CO2		3			3		2			-		3
CO3		3			3 3		3		-		3	
CO4		3			3		3			-		3
CO5		3			3		3			-		3
CO6		3			3			3		-		3
Average		3			3		2	2.5		-		3



	MTech/CSE/PT/5/SEC1:Dissertation												
Course	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment Methods						
Туре	Credit	Hours/ Week	Mode	External	Internal	Duration							
Research Work	20	04	-	400	100	-	Teacher interaction/ Dissertation/ Viva voce						

Instructions to paper setter for Final Term Examination: The Final Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of dissertation and a viva voce exam.


Course Objectives: The objective of this course is to inculcate a flavor of research in the scholars by allowing them to work on a real life research problem.

Course Outcomes	At the end o	At the end of this course, the student will be able to :									
CO1		define: objectives, hypothesis, interpretation, data analysis, data collection,									
		research design and method, interpretation, data analysis, sampling.									
CO2		describe: objectives, hypothesis, interpretation, data analysis, data collection,									
	research de	research design and method, interpretation, data analysis, sampling.									
CO3	Illustrate: n	Illustrate: measurement, data collection, processing, sampling, analysis and its									
	strategies, re	<u> </u>									
CO4	_	categorize: research, sampling methods, data collection techniques, reports,									
	-	and data processing strategies.									
	perform: da	perform: data analysis.									
CO5	compare: s	compare: sampling methods, data collection techniques, reports and data									
	processing	processing strategies.									
CO6	create: thesis										
	design: resea										
	interpret(dri										
	CO-PEO Mapp	oing Matrix for Co	ırse MTech/CSl	E/PT/5/SEC1							
Cos	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	1	3	3	3						
CO2	2	2	3	3	3						
CO3	3	3	3	3	3						
CO4	3	3	3	3	3						
CO5	3	3	3	3	3						
CO6	3	3	3	3	3						
Average	2.5	2.5	3	3	3						
	CO-PO Mappi	ng Matrix for Cou	rse MTech/CSE	/PT/5/SEC1							

Cos	PO1	PO2	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12
CO1	1	3	1	1	1	-	_	3	-	3	1	3
CO2	2	1	1	3	1	-	-	3	-	3	2	3
CO3	3	1	1	3	3	-	-	3	_	3	3	3
CO4	3	3	1	3	1	j -	-	3	-	3	3	3
CO5	3	1	1	3	3	-	-	3	-	3	3	3
CO6	3	3	3	3	3	-	-	3	_	3	3	3
Average	2.5	2	1.3	2.6	2	-	-	3	-	3	2.5	3
C	O-PSC) Map	ping M	[atrix	for Co	urse M	Tech/C	SE/PT/	5/SEC	1		
Cos	PS	01	P	SO2		PSO3			PSO4		PSO5	
CO1	3	3		3	Ì		1		3		3	
CO2	3	3		3		2			3		3	
CO3	3	3		3			3		3		3	
CO4	3	3		3			3		3		3	
CO5	3	3	3			3			3		3	
CO6	3	3		3		3			3		3	
Average	3	3		3		2	2.5		3		3	

